Микроконтроллеры mcs 51 структурная схема. Микроконтроллеры семейства mcs51. Аккумулятор и регистры общего назначения

Фирма Intel является родоначальницей архитектуры семейства MCS-51, которое получило свое название от первого представителя этого семейства - микроконтроллера 8051, выпущенного в 1980 году на базе технологии n-МОП. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер 8051 являлся для своего времени очень сложным изделием - в кристалле было использовано 128 тыс. транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре 8086. Указанный микроконтроллер остается ядром семейства MCS-51 и по сей день.

Основными элементами базовой архитектуры семейства (архитектуры микроконтроллера 8051) являются:

8-разрядное АЛУ;

4 банка регистров, по 8 в каждом;

Внутренняя (резидентная) память программ 4 Кбайт, имеющая тип ROM или EPROM (8751);

Внутренняя (резидентная) память данных 128 байт;

21 регистр специальных функций;

Булевый процессор;

Два 16-разрядных таймера/счетчика;

Контроллер последовательного порта (UART);

Контроллер обработки прерываний с двумя уровнями приоритетов;

Четыре 8-разрядных порта ввода/вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных;

Встроенный тактовый генератор.

Затем был выпущен микроконтроллер 8052, который отличался увеличенным объемом резидентной памяти программ и данных, введенным третьим таймером и соответственно расширенным контроллером прерываний.

Следующим принципиальным шагом в развитии MCS-51 стал перевод технологии изготовления на КМОП (модификация 8xC51). Это позволило реализовать режимы Idl (холостой ход) и Power Down (пониженное потребление), обеспечивающие резкое снижение энергопотребления кристалла и открывшие дорогу к применению микроконтроллера в энергозависимых приложениях, например, в автономных приборах с батарейным питанием.

И последним важным этапом развития МК 8051 фирмой Intel стал выпуск микроконтроллеров 8xC51FA/FB/FC и 8xC51RA/RB/RC, которые для краткости часто обозначаются как 8xC51Fx и 8xC51Rx. Главной отличительной особенностью этой группы кристаллов является наличие у них специализированного таймера/счетчика (РСА). Кроме того, микроконтроллеры 8xC51Rx дополнительно содержат сторожевой таймер (WDT). Рассмотрим архитектуру и функциональные возможности PCA более подробно.

В состав РСА входят:

16-разрядный таймер/счетчик;

Пять 16-разрядных модуля выборки и сравнения, каждый из которых связан со своей линией порта ввода/вывода микроконтроллера.

Таймер/счетчик обслуживает все пять модулей выборки и сравнения, которые могут быть запрограммированы на выполнение одной из следующих функций:

16-битовая выборка значения таймера по положительному фронту внешнего сигнала;

16-битовая выборка значения таймера по отрицательному фронту внешнего сигнала;

16-битовая выборка значения таймера по любому фронту внешнего сигнала;

16-битовый программируемый таймер;

16-битовое устройство скоростного вывода;

8-битовый ШИМ.

Выполнение всех перечисленных функций происходит в РСА на аппаратном уровне и не загружает центральный процессор. Указанное позволяет повысить общую пропускную способность, повысить точность измерений и обработки сигналов и снизить время реакции микроконтроллера на внешние события, что особенно важно для систем реального времени. Реализованный в 8xC51Fx (8xC51Rx) РСА оказался настолько

Обозначение

Макс. частота (МГц)

ROM/EPROM (байт)

счетчики

удачным, что архитектура этих микроконтроллеров стала промышленным стандартом, а сам РСА многократно воспроизводился в различных модификациях МК 8051.

Некоторые характеристики ряда микроконтроллеров MCS-51, выпускаемых фирмой Intel, приведены в табл.1.1.

Изначально наиболее "узкими" местами архитектуры MCS-51 были 8-разрядное АЛУ на базе аккумулятора и относительно медленное выполнение команд (для выполнения самых быстрых команд требуется 12 пе-

Таблица 1.1

ввода/вывода

АЦП, входы x разряды

периферия,

особенности

U пит. (В)

Низковольтный вариант

4 уровня IRQ, clock out

4 уровня IRQ, clock out

Низковольтный вариант 8xC51Fx

4 уровня IRQ, clock out

4 уровня IRQ, clock out

4 уровня IRQ, clock out

риодов тактовой частоты (частоты синхронизации МК)). Это ограничивало применение микроконтроллеров семейства в приложениях, требующих повышенного быстродействия и сложных вычислений (16- и 32-битовых). Насущным стал вопрос принципиальной модернизации архитектуры MCS-51. Проблема модернизации осложнялась тем, что к началу 90-х годов уже была создана масса наработок в области программного и аппаратного обеспечения семейства MCS-51, в связи с чем одной из основных задач проектирования новой архитектуры была реализация аппаратной и программной совместимости с разработками на базе MCS-51.

Для решения указанной задачи была создана совместная группа из специалистов компаний Intel и Philips, но позднее пути этих двух фирм разошлись. В результате в 1995 году появилось два существенно отличающихся семейства: MCS-251/151 у Intel и MCS-51XA у Philips (см. подраздел 1.2).

Основные характеристики архитектуры MCS-251:

24-разрядное линейное адресное пространство, обеспечивающее адресацию до 16 Мбайт памяти;

Регистровая архитектура, допускающая обращение к регистрам как к байтам, словам и двойным словам;

Страничный режим адресации для ускорения выборки команд из внешней программной памяти;

Очередь инструкций;

Расширенный набор команд, включающий 16-битовые арифметические и логические операции;

Расширенное адресное пространство стека (до 64 Кбайт);

Выполнение самой быстрой команды за 2 такта.

Система команд MCS-251 включает два набора инструкций - первый набор является копией системы команд MCS-51, а второй состоит из расширенных инструкций, реализующих преимущества архитектуры MCS-251. Перед использованием микроконтроллера его необходимо сконфигурировать, т.е. с помощью программатора "прожечь" конфигурационные биты, определяющие, какой из наборов инструкций станет активным после включения питания. Если установить первый набор инструкций, то в этом случае МК семейства MCS-251 будет совместим с MCS-51 на уровне двоичного кода. Такой режим называется Binary Mode. Если же изначально установить набор расширенных инструкций (режим Source Mode), то тогда программы, написанные для MCS-51, потребуют перекомпиляции на кросс-средствах для MCS-251. Режим Source Mode позволяет с максимальной эффективностью использовать архитектуру MCS-251 и достигнуть наибольшего быстродействия.

Для пользователей, ориентированных на применение микроконтроллеров MCS-251 в качестве механической замены MCS-51, фирма Intel выпускает микроконтроллеры MCS-151, уже запрограммированные в состояние Binary Mode.

Некоторые характеристики ряда микроконтроллеров MCS-251/151 приведены в табл.1.1.

В настоящее время Intel, устремленная на рынок Pentium-процессоров, сворачивает производство кристаллов MCS-51. В целом для конкретного разработчика это может остаться и незамеченным, если только он не использует микроконтроллеры 8xC51GB и 80C152Jx, которые не имеют своих точных аналогов среди изделий других фирм. Что же касается всех остальных микроконтроллеров семейства MCS-51, то все они многократно растиражированы другими компаниями.

Основой микроконтроллера (см. рис. 1) является 8–ми битовое Арифметическо–Логическое устройство (АЛУ). Память МК имеет Гарвардскую архитектуру, т.е. логически разделена: на память программ – ПП (внутреннюю или внешнюю), адресуемую 16–ти битовым счетчиком команд (СК) и память данных – внутреннюю (Резидентная память данных – РПД) 128 (или 256) байт, а также внешнюю (Внешняя память данных – ВПД) до 64 Кбайт. Физически память программ реализована на ПЗУ (доступна только по чтению), а память данных – на ОЗУ (возможна запись и чтение данных).

Прием и выдача внешних сигналов осуществляется через 4 восьмибитовых порта Р0..Р3. При обращении к внешней памяти программ (ВПП) или памяти данных (ВПД) порты Р0 и Р2 используются как мультиплексированная внешняя шина Адрес/Данные. Линии порта Р3 могут выполнять также альтернативные функции (см. табл. 1).

16–ти битовый регистр DPTR формирует адрес ВПД или базовый адрес Памяти программ в команде преобразования Аккумулятора. Регистр DPTR может также использоваться как два независимых 8–ми битовых регистра (DPL и DPH) для хранения операндов.

8–ми битовый внутренний регистр команд (РК) принимает код выполняемой команды; этот код дешифрируется схемой управления, которая генерирует управляющие сигналы (см. рис. 1).

Обращение к регистрам специальных функций – РСФ (SFR – на рис. 1 они обведены пунктирной линией) возможно только с использованием прямой байтовой адресации в диапазоне адресов от 128 (80h) и более.


Резидентная память данных (РПД) в первых моделях микроконтроллеров семейства MCS–51 имела объем 128 байт. Младшие 32 байта РПД являются одновременно и регистрами общего назначения – РОН (4 банка по 8 РОНов). Программа может обратиться к одному из 8–ми РОНов активного банка. Выбор активного банка РОНов осуществляется программированием двух бит в регистре состояния процессора – PSW.


Таблица 1 – Назначение выводов MCS–51

№ выв. Обозначение Назначение
1..8 Р1 8–ми битовый квазидвунаправленный порт ввода/вывода
9 RST

Сигнал сброса (активный уровень – высокий);

Сигнал RST обнуляет: PC и большинство Регистров Специальных Функций (SFR), запрещая все прерывания и работу таймеров; выбирает Банк РОНов 0; записывает в порты Р0_Р3 "все единицы", подготавливая их на ввод; записывает код 07H в указатель стека (SP);

10..17

8–ми битовый квазидвунаправленный порт ввода/вывода; после записи в соответствующий разряд "1" – выполняет дополнительные (альтернативные) функции:

Вход последовательного порта – RxD;

Выход последовательного порта – TxD;

Вход внешнего прерывания 0 – ~INT0;

Вход внешнего прерывания 1 – ~INT1;

Вход таймера/счетчика 0 – Т0;

Вход таймера/счетчика 1 – Т1;

Выход строб. сигнала при записи в ВПД – ~ WR;

Выход строб. сигнала при чтении из ВПД – ~ RD;

18, 19 X1, X2 Выводы для подключения кварцевого резонатора или LC–контура;
20 GND Общий вывод;
21..28 P2 8–ми битовый квазидвунаправленный порт ввода /вывода; или выход адреса A в режиме работы с внешней памятью (ВПП или ВПД);
29 PME Строб чтения Внешней Памяти Программ, выда–ется только при обращении к внешнему ПЗУ;
30 ALE Строб адреса Внешней памяти (ВПП или ВПД);
31 ЕА Отключение РПП, уровень "0" на этом входе пе–реводит МК на выборку команд только из ВПП ;
39..32 Р0 8–ми битовый двунаправленный порт ввода/ вывода; при обращении к Внешней Памяти выдает адреса A (которые записываются во внешний регистр по сигналу ALE), а затем обменивается байтом синхронно с сигналом ~PME (для команд) или ~WR,~RD (для данных в ВПД), при обращении к Внешней Памяти в регистр порта Р0 записываются все единицы, разрушая хранимую там информацию;
40 Ucc Вывод напряжения питания

Переключение банков РОНов упрощает выполнение подпрограмм и обработку прерываний, т.к. не нужно пересылать в стек содержимое РОНов основной программы при вызове подпрограммы (достаточно в подпрограмме перейти в другой активный банк РОНов).

Обращение к РПД возможно с использованием косвенной или прямой байтовой адресации (прямая байтовая адресация позволяет обратиться только к первым 128-ми байтам РПД).

Расширенная область РПД (у микроконтроллеров семейства MCS-52 и последующих семейств) с адреса 128 (80h) до 255 (FFh) может адресоваться только с использованием косвенного метода адресации.

Таблица 2 – Блок Регистров Специальных Функций (s f r)

Мнемо–код Наименование
0E0h * ACC Аккумулятор
0F0h * B Регистр расширитель аккумулятора
0D0h * PSW Слово состояния процессора
0B0h * P3 Порт 3
0A0h * P2 Порт 2
90h * P1 Порт 1
80h * P0 Порт 0
0B8h * IP Регистр приоритетов прерываний
0A8h * IE Регистр маски прерываний
99h SBUF Буфер последовательного приемо–передатчика
98h * SCON Регистр управления/статуса последовательного порта
89h TMOD Регистр режимов таймеров/счетчиков
88h * TCON Регистр управления/статуса таймеров/счетчиков
8Dh TH1 Таймер 1 (старший байт)
8Bh TL1 Таймер 1 (младший байт)
8Ch TH0 Таймер 0 (старший байт)
8Ah TL0 Таймер 0 (младший байт)
83h DPH Регистр–указатель данных (DPTR) (старший байт)
82h DPL Регистр–указатель данных (DPTR) (младший байт)
81h SP Регистр–указатель стека
87h PCON Регистр управления мощностью потребления

2. ПРОГРАММНАЯ МОДЕЛЬ MCS–51


ТИПЫ КОМАНД MCS–51

Почти половина команд выполняется за 1 машинный цикл (МЦ). При частоте кварцевого генератора 12 МГц время выполнения такой команды – 1 мкс. Остальные команды выполняются за 2 машинных цикла, т.е. за 2мкс. Только команды умножения (MUL) и деления (DIV) выполняются за 4 машинных цикла.

За время одного машинного цикла происходит два обращения к Памяти Программ (внутренней или внешней) для считывания двух байтов команды или одно обращение к Внешней Памяти Данных (ВПД).

3. МЕТОДЫ (СПОСОБЫ) АДРЕСАЦИИ MCS–51

1. РЕГИСТРОВАЯ АДРЕСАЦИЯ – 8–ми битовый операнд находится в РОНе выбранного (активного) банка регистров;

2 НЕПОСРЕДСТВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – #) – операнд находится во втором (а для 16–ти битового операнда и в третьем) байте команды;

3 КОСВЕННАЯ АДРЕСАЦИЯ (обозначается знаком – @) – операнд находится в Памяти Данных (РПД или ВПД), а адрес ячейки памяти содержится в одном из РОНов косвенной адресации (R0 или R1); в командах PUSH и POP адрес содержится в указателе стека SP; регистр DPTR может содержать адрес ВПД объемом до 64К;

4 ПРЯМАЯ БАЙТОВАЯ АДРЕСАЦИЯ – (dir) – используется для обращения к ячейкам РПД (адреса 00h…7Fh) и к регистрам специальных функций SFR (адреса 80h…0FFh);

5 ПРЯМАЯ БИТОВАЯ АДРЕСАЦИЯ – (bit) – используется для обращения к отдельно адресуемым 128 битам, расположенным в ячейках РПД по адресам 20H…2FH и к отдельно адресуемым битам регистров специальных функций (см. табл. 3 и программную модель);

6 КОСВЕННАЯ ИНДЕКСНАЯ АДРЕСАЦИЯ (обозначается знаком – @)– упрощает просмотр таблиц в Памяти Программ, адрес ПП определяется по сумме базового регистра (PC или DPTR) и индексного регистра (Аккумулятора);

7 НЕЯВНАЯ (ВСТРОЕННАЯ) АДРЕСАЦИЯ – в коде команды содержится неявное (по умолчанию) указание на один из операндов (чаще всего на Аккумулятор).

4. ФОРМАТ СЛОВА СОСТОЯНИЯ ПРОЦЕССОРА (PSW)

C – флаг переноса (CARY) или заема, выполняет также функции "булевого Аккумулятора" в командах, оперирующих с битами;

AC – флаг вспомогательного (дополнительного) переноса – устанавливается в "1", если в команде сложения (ADD, ADDC) был перенос из младшей тетрады в старшую (т.е. из 3-го бита в 4-й бит);

F0 – флаг пользователя – устанавливается, сбрасывается и проверяется программно;

RS1 RS0 Банк Адрес (dir)
0 0 0 00h..07h
0 1 1 08h..0Fh
1 0 2 10h..17h
1 1 3 18h..1Fh

RS1,RS0 – Выбор банка регистров:

OV – Флаг арифметического переполнения; его значение определяется операцией "Исключающее ИЛИ" сигналов входного и выходного переносов старшего разряда АЛУ; единичное значение этого флага указывает на то, что результат арифметической операции в дополнительном коде вышел за допустимые пределы: –128…+127; при выполнении операции деления флаг OV сбрасывается, а в случае деления на ноль – устанавливается; при умножении флаг OV устанавливается, если результат больше 255 (0FFH);

Разряд PSW – Резервный, содержит триггер, доступный по записи или чтению;

P – флаг паритета – является дополнением количества единичных битов в аккумуляторе до четного; формируется комбинационной схемой (программно доcтупен только по чтению).

В микроконтроллерах MCS-51 отсутствует флаг "Z". Но в командах условного перехода (JZ, JNZ) проверяется комбинационной схемой текущее (нулевое или ненулевое) содержимое Аккумулятора.

Все команды пересылок и обмена операндов могут осуществляться через Аккумулятор (см. рис. 3). Причем пересылки из/в Внешней Памяти (Памяти Программ или Памяти Данных) могут осуществляться только через Аккумулятор.

Большинство пересылок могут осуществляться также через прямоадресуемый байт (dir). Существуют даже пересылки dir – dir (см. рис. 3).

Отсутствующие пересылки из РОНа в РОН могут быть реализованы как пересылки из РОНа в прямоадресуемый байт dir (с учетом того, что РОНы расположены в начальной области Резидентной Памяти Данных, ячейки которой могут адресоваться как dir).

Команды обмена XCH позволяют пересылать байты без разрушения обоих операндов.

Арифметические команды выполняются только в Аккумуляторе. Поэтому первый операнд необходимо предварительно поместить в Аккумулятор и потом сложить или вычесть второй операнд. Результат помещается в Аккумулятор.


Команда вычитание SUBB выполняется только с заемом (т.е. из результата вычитается и флаг Сary). Поэтому для выполнения команды вычитания без заема необходимо предварительно выполнить команду очистки флага С (CLRC).

Команда умножения однобайтовых операндов – MULAB – размещает двухбайтовый (16 бит) результат: младший байт – в Аккумулятор, старший байт – в регистр В.

Результат выполнения команды деления однобайтовых операндов – DIVAB – помещается: частное – а Аккумулятор, остаток – в регистр В.

Арифметическая команда INC добавляет к выбранному операнду единицу. Арифметическая команда DEC вычитает из выбранного операнда единицу. Команда десятичной коррекции Аккумулятора (DAA) помогает складывать двоично-десятичные числа (BCD-числа) без перевода их в шестнадцатеричный формат (hex-формат). Исходные операнды должны быть обязательно в BCD-формате, т.е. в каждой тетраде одного байта находятся только числа от 0 до 9 (там не могут быть шестнадцатеричные числа: A, B, C, D, E, F). Поэтому в одном байте могут находиться числа от 00 до 99 для упакованных BCD-чисел или числа от 0 до 9 для неупакованных BCD-чисел.

Команда DA A – десятичной коррекции выполняет действия над содержимым Аккумулятора после сложения BCD-чисел в процессоре (числа складывались по законам шестнадцатеричной арифметики) следующим образом (см. пример):

· если содержимое младшей тетрады Аккумулятора больше 9 или установлен флаг вспомогательного переноса (AС = 1), то к содержимому Аккумулятора добавляется 6 (т.е. недостающие шесть цифр в hex-формате);

· если после этого содержимое старшей тетрады Аккумулятора больше 9 или установлен флаг C, то число 6 добавляется к старшей тетраде Аккумулятора.

Команду десятичной коррекции DA A не применяют после команды инкремента (INC), потому что команда инкремента не влияет (не изменяет) на флаги С и АС.

Логические команды:

Логическое "И" – ANL,

Логическое "ИЛИ" – ORL,

Логическая команда "ИСКЛЮЧАЮЩЕЕ ИЛИ" – XRL– выполняются в Аккумуляторе (как и арифметические), но имеется возможность выполнить логические команды также и в прямоадресуемом байте (dir). При этом второй операнд может быть:

В Аккумуляторе или

Непосредственный операнд в команде.

Команды вращения (RR A, RL A) и команды вращения через флаг CARY (RRC A, RLC A) циклически сдвигают содержимое Аккумулятора на 1 бит.ресылки битовых операндов осуществляются только через флаг С.

Министерство общего и профессионального образования Российской Федерации Новосибирский Государственный Технический Университет В.Н. Веприк, В.А. Афанасьев, А.И. Дружинин, А.А. Земсков, А.Р. Исаев, О.В. Малявко МИКРОКОНТРОЛЛЕРЫ СЕМЕЙСТВА MCS-51 Учебное пособие по курсам "Микропроцессорные системы" и "Проектирование микропроцессорных систем" для студентов старших курсов факультета автоматики и вычислительной техники всех форм обучения Новосибирск 1997 В.Н. Веприк, В.А. Афанасьев, А.И. Дружинин, А.А. Земсков, А.Р. Исаев, О.В. Малявко. Микроконтроллеры семейства MCS-51: Учебное пособие. - Новосибирск. Предлагаемое Вашему вниманию учебное пособие содержит общее описание архитектуры, функциональных возможностей и системы команд семейства однокристальных микроконтроллеров (Embedded Microcontrollers) MCS-51, производимых фирмой INTEL. Во второй части пособия приводится описание учебного микропроцессорного контроллера УМПК- 51, предлагаемого студентам в качестве объекта исследования при выполнении цикла лабораторных работ. Материал пособия может использоваться при курсовом и дипломном проектировании, а также может быть полезным для инженеров - схемотехников, занимающихся разработкой и эксплуатацией электронной аппаратуры. Авторы выражают глубокую признательность АОЗТ "Новые технологии"- официальному дистрибьютору фирмы INTEL за предоставление материалов, на основе которых выполнена данная работа. Табл.15, ил.25, список лит. 12 назв. Рецензенты: Е.Д. Баран, Г.Г. Матушкин. Работа подготовлена на кафедре вычислительной техники Новосибирский государственный © технический университет 2 ВВЕДЕНИЕ. Семейство 8-разрядных однокристальных микроконтроллеров MCS-51 появилось на мировом рынке в начале восьмидесятых годов. Первые модификации кристаллов (около 7) были выполнены по высококачественной n-МОП (HMOS) технологии и являлись функционально завершенными однокристальными микроЭВМ гарвардской архитектуры, один из основных принципов которой состоит в логическом разделении адресных пространств памяти программ и данных. С развитием полупроводниковой технологии последующие версии микросхем MCS-51 стали изготавливать по более совершенной и низкопотребляющей КМОП (CHMOS) технологии (в активном режиме потребление кристаллов было доведено до 10 50 мА). Система команд MCS-51, ориентированная на реализацию различных цифровых алгоритмов управления, при сохранении некоторой внешней схожести с системой команд предыдущего семейства MCS-48, качественно расширилась, в ней появились принципиальные нововведения: битово-ориентированные операции и адресуемые в памяти данных битовые поля, что дало возможность говорить о реализации на кристалле битового процессора; реализовано исполнение команд умножения, деления и вычитания; усовершенствована работа со стеком; расширена группа команд передачи управления; Система команд стала выглядеть более симметричной, то есть менее зависимой от пересылок данных через аккумулятор. Функциональные возможности встроенных периферийных устройств также расширились за счет введения: двух 16-разрядных таймеров-счетчиков; аппаратного последовательного дуплексного порта; двухуровневой системы прерываний; четырех 8-битовых портов ввода-вывода. Принципиальные изменения в структуре временного цикла работы процессора привели к ускорению работы с внешней памятью программ и данных, а также реакций на внешние и внутренние прерывания. Суммарный размер адресного пространства внешней памяти программ и данных увеличился до 128 Кбайт. 16-разрядные регистры счетчика команд (Program Counter) и указателя данных (Data Pointer) позволили напрямую обращаться ко всему диапазону адресов, что дало разработчикам возможность реализации алгоритмов быстрой обработки крупных массивов данных. Все программно-доступные узлы микроконтроллера были сведены в специальную область памяти данных (Special Function Register), что позволило обращаться к ним почти так же, как и к обычным ячейкам резидентного ОЗУ. В более поздних модификациях кристаллов усовершенствование шло по пути наращивания дополнительных функциональных возможностей с сохранением полной программной совместимости с более ранними версиями. Особенностями последних модификаций микроконтроллеров семейства MCS-51 являются: полностью статический дизайн; 3- и 5-вольтовые версии кристаллов; широкий спектр встроенных периферийных устройств; максимальная тактовая частота - 24 мГц; для отдельных групп кристаллов - 33 мГц. В настоящее время в состав MCS-51 входит около 60 версий кристаллов, кроме того, имеется и доступна подробная фирменная документация (к сожалению, пока мало переведенная на русский язык). Для подготовки математического обеспечения микроконтроллеров MCS-51 используются в основном языки "ASM-51", "С", для которых существуют ряд достаточно хорошо зарекомендовавших себя компиляторов, библиотек стандартных подпрограмм и программных эмуляторов, производимых различными зарубежными и отечественными фирмами. 3 Несмотря на достаточную "древность" семейства (более 15 лет) и появление на мировом рынке за последние годы однокристальных микроконтроллеров большей производительности и усовершенствованной архитектуры - MCS-51, MCS-251, MCS-96, контроллеры MCS-51 еще достаточно долго будут широко использоваться в сравнительно простых встроенных системах управления . 4 1. СИСТЕМА ОБОЗНАЧЕНИЙ КОМПОНЕНТОВ ФИРМЫ INTEL И ФУНКЦИОНАЛЬНЫЙ СОСТАВ СЕМЕЙСТВА MCS-51 Для маркировки микросхем фирмой INTEL применяется система обозначений из нескольких полей: 1 2 3 4 Х ХХ ХХХХХХХХХХХХХХХ ХХХХХХ Первое поле содержит однобуквенный префикс, отражающий температурный диапазон микросхемы: А (Automotive), автомобильное исполнение для расширенного температурного диапазона (-40/+125 С) М (Military), исполнение по военным стандартам (-55/+125 С) Q или С (Commercial), "коммерческий" температурный диапазон (0/+70 С) с (160 8)- часовой динамической термотренировкой; L или Е (Extended), "расширенный" температурный диапазон (-40/+85 С) с (160 8)- часовой динамической термотренировкой; Т (Extended), "расширенный" температурный диапазон (-40/+85 С) без термотренировки; I (Industrial), исполнение по промышленным стандартам. Второе поле содержит одно- или двухбуквенный префикс, указывающий на вариант исполнения корпуса микросхемы (Package Type). Различных типов корпусов микросхем на сегодняшний день несколько десятков, поэтому в качестве примера приведем лишь некоторые обозначения: A Ceramic Pin Grid Array, (PGA); C Ceramic Dual In-Line Package, (CDIP); K Ceramic Quad Flatpack Package, (QFP); KD Plastic Quad Flatpack Package, Fine Pitch, Die Down, (PQFP); KU Plastic Quad Flatpack Package, Fine Pitch, Die Up, (PQFP); N Plastic Leaded Chip Carrier, (PLCC); P Plastic Dual In-Line Package, (PDIP); SM Single In-Line Leadless Memory Module, (SIMM); U Plastic Dual In-Line Package, Shrink Dip, (PDIPS); Z Zigzag In-Line Package, (ZIP). Третье поле может содержать до 15 цифровых и буквенных символов, указывающих на тип конкретного устройства, расположенного на кристалле. Четвертое поле может включать до шести цифровых и буквенных символов, отражающих различные особенности и варианты исполнения микросхем . Дополнительную информацию по типам корпусов и их конструктивному исполнению можно найти в книге: Packaging Order Number 240800. Применительно к описываемым микроконтроллерам семейства MCS-51, первый символ третьего поля традиционно (для фирмы Intel) равен "8". Второй символ третьего поля обычно указывает на тип встроенного ПЗУ: 0 масочное ПЗУ программ; кристалл без ПЗУ (для поздних версий кристаллов); 1 масочное ПЗУ программ (Standard ROM Code, Firmware); 3 масочное ПЗУ (для поздних версий кристаллов), (Customizable ROM Code); 7 УФРПЗУ или однократно-программируемое ПЗУ (EPROM or OTP ROM); 8 ЭСППЗУ (Flash - память на кристалле) Далее может следовать буква, указывающая на технологические особенности изготовления: отсутствие буквы технология HMOS, питание 5В; С технология СHMOS, питание 5В; L технология СHMOS, питание 3В; 5 Следующими символами третьего поля для микроконтроллеров семейства MCS-51 являются номера (например, 31,32,51,54,58,152) и от одной до четырех букв, которые отражают функциональные особенности кристаллов (например, объем ПЗУ, специфику группы кристаллов, наличие системы защиты памяти программ от несанкционированного доступа, возможность использования более совершенного алгоритма программирования "Quick Pulse" и тому подобное). В оригинальной технической документации фирмы Intel все микроконтроллеры семейства MCS-51 скомпонованы по группам ("Product Line"), каждая из которых объединяет наиболее близкие по своим функциональным возможностям и электрическим параметрам версии кристаллов. Поскольку наименования микросхем одной группы различаются незначительно, то для обозначения каждой отдельной группы применяется обобщенная символика, образованная из маркировки конкретных микросхем, путем замены различающихся символов на "Х". Таким образом, можно выделить следующие группы микроконтроллеров. 1. Группа 8Х5Х (8051 Product Line и 8052 Product Line): 8031АН, 8051АН, 8751Н, 8051АНР, 8751Н-8, 8751ВН, 8032АН, 8052АН, 8752ВН. 2. Группа 8ХС51 (80С51 Product Line): 80С31ВН, 80С51ВН, 87С51. 3. Группа 8ХС5Х (8ХС52/54/58 Product Line): 80С32, 80С52, 87С52, 80С54, 87С54, 80С58, 87С58. 4. Группа 8ХС51FX (8XC51FA/FB/FC Product Line): 80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC. 5. Группа 8ХL5X (8XL52/54/58 Product Line): 80L52, 87L52, 80L54, 87L54, 80L58, 87L58. 6. Группа 8XL51FX (8XL51FA/FB/FC Product Line): 80L51FA, 83L51FA, 87L51FA, 83L51FB, 87L51FB, 83L51FC, 87L51FC. 7. Группа 8ХС51RX (8XC51RA/RB/RC Product Line): 80C51RA, 83C51RA, 87C51RA, 83C51RB, 87C51RB, 83C51RC, 87C51RC. 8. Группа 8ХC51GB (8XC51GX Product Line): 80C51GB, 83C51GB, 87C51GB. 9. Группа 8ХС152JX (8XC152 Product Line): 80C152JA, 83C152JA, 80C152JB, 80C152JC, 83C152JC, 80C152JD. 10. Группа 8XC51SL (8XC51SL Product Line): 80C51SL-BG, 81C51SL-BG, 83C51SL-BG, 80C51-AH, 81C51SL-AH, 83C51SL-AH, 87C51SL- AH, 80C51SL-AL, 81C51SL-AL, 83C51SL-AL, 87C51SL-AL. Первая группа микроконтроллеров включает в себя младшие модели семейства, выполненные по n-МОП технологии и не рекомендуемые к использованию в новых разработках, все остальные группы выполнены по современной КМОП технологии. Микросхемы второй, третьей и четвертой групп являются на сегодняшний день классическими представителями семейства MCS-51. В пятую и шестую группы входят 3- вольтовые версии кристаллов (Low-Voltage). Кристаллы седьмой группы оснащены расширенным ОЗУ (Expanded RAM), объем которого равен 512 байт. Микросхемы восьмой, девятой и десятой групп представляют собой специализированные по применению микроконтроллеры (Application Specific). Многие современные приложения требуют высокопроизводительных управляющих микроконтроллеров, использующих расширенные возможности адресации, регистровую архитектуру, большой объем внутреннего ОЗУ и стека, а также эффективно поддерживающих программирование на языке высокого уровня. К таким микроконтроллерам относятся микроконтроллеры новой архитектуры (New Architecture) семейств MCS-5 и MCS-251, к производству которых компания Intel приступила в 1995 году. Функциональный состав и ключевые особенности микроконтроллера MCS-51/MCS-251 приведены в приложении. 6 2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ БАЗОВОЙ МОДЕЛИ СЕМЕЙСТВА МИКРОКОНТРОЛЛЕРОВ MCS-51. Базовой моделью семейства микроконтроллеров MCS-51 и основой для всех последующих модификаций является микроконтроллер I-8051. Его основные характеристики следующие: восьмиразрядный ЦП, оптимизированный для реализации функций управления; встроенный тактовый генератор; адресное пространство памяти программ - 64 К; адресное пространство памяти данных - 64 К; внутренняя память программ - 4 К; внутренняя память данных - 128 байт; дополнительные возможности по выполнению операций булевой алгебры (побитовые операции); 32 двунаправленные и индивидуально адресуемые линии ввода/вывода; 2 шестнадцатиразрядных многофункциональных таймера/счетчика; полнодуплексный асинхронный приемопередатчик; векторная система прерываний с двумя уровнями приоритета и шестью источниками событий . Структурная схема I-8051 показана на рис.1, назначение выводов микросхемы - на рис.2. External interrupts Interrupts 128 bytes T/C 0 counter 4K ROM control RAM T/C 1 inputs CPU BUS 4 I/O Serial OSC control Ports Port P0 P1 P2 P3 T D R D Address/Data Рис.1. Структурная схема I-8051 Вся серия MCS-51 имеет гарвардскую архитектуру, то есть раздельные адресные пространства памяти программ и данных. Организация памяти изображена на рис.3. Объем внутренней (резидентной) памяти программ (ROM, EPROM или OTP ROM), располагаемой на кристалле, в зависимости от типа микросхемы может составлять 0 (ROMless), 4К (базовый кристалл), 8К, 16К или 32К. При необходимости пользователь может расширять память программ установкой внешнего ПЗУ. Доступ к внутреннему или внешнему ПЗУ определяется значением сигнала на выводе ЕА (External Access): EA=Vcc (напряжение питания) - доступ к внутреннему ПЗУ; EA=Vss (потенциал земли) - доступ к внешнему ПЗУ. Для кристаллов без ПЗУ (ROMless) вывод ЕА должен быть постоянно подключен к Vss. Строб чтения внешнего ПЗУ - PS EN (Program Store Enable) генерируется при обращении к внешней памяти программ и является неактивным во время обращения к ПЗУ, расположенному на кристалле. 7 Область нижних адресов памяти программ используется системой прерываний, архитектура микросхемы 8051обеспечивает поддержку пяти источников прерываний: двух внешних прерываний; двух прерываний от таймеров; прерывания от последовательного порта. P1.0 1 40 Vcc P1.1 2 39 P0.0 (AD0) P1.2 3 38 P0.1 (AD1) P1.3 4 37 P0.2 (AD2) P1.4 5 36 P0.3 (AD3) P1.5 6 35 P0.4 (AD4) P1.6 7 34 P0.5 (AD5) P1.7 8 33 P0.6 (AD6) RESET 9 32 P0.7 (AD7) (R D) P3.0 10 31 EA/Vpp (T D) P3.1 11 30 ALE/PROG (INT0) P3.2 12 29 PSEN (INT1) P3.3 13 28 P2.7 (A15) (T0) P3.4 14 27 P2.6 (A14) (T1) P3.5 15 26 P2.5 (A13) (WR) P3.6 16 25 P2.4 (A12) (RD) P3.7 17 24 P2.3 (A11) XTAL2 18 23 P2.2 (A10) XTAL1 19 22 P2.1 (A9) Vss 20 21 P2.0 (A8) Рис.2. Назначение выводов I-8051 Память программ (Чтение) Память данных (Чтение/Запись) FFFFH Внешнее ПЗУ FFFFH Внешняя @DPTR RD память PSEN WR данных @PC MOVC EA=0 Внутренняя память @DPTR данных @PC Внешнее Внутреннее FFH upper 128 SFR MOVX ПЗУ ПЗУ 80H EA=0 0000H EA=1 lower 128 00H 0000H PSEN Рис.3. Организация памяти семейства MCS-51 8 На рис.4 изображена карта нижней области программной памяти. ROM Память программ 0033Н 002BН Serial Port 0023Н Вектора Timer1 001BН прерываний EINT1 0013Н Timer0 000BH EINT0 0003Н Стартовый адрес 0000H (Reset) Рис.4. Программная память Адреса векторов прерываний расположены с интервалом в 8 байт: - 0003Н внешнее прерывание 0 (External Interrupt 0) - вывод IN T 0 ; - 000BН прерывание от таймера 0 (по флагу переполнения таймера - T F 0); - 0013Н внешнее прерывание 1 (External Interrupt 1) - вывод IN T 1 ; - 001BH прерывание от таймера 1 (по флагу переполнения таймера - T F 1); - 0023H прерывание от последовательного порта (Serial Interrupt = Receive Interrupt or Transmit Interrupt); и так далее. Память данных отделена от памяти программ. В этой области возможна адресация 64К внешнего ОЗУ. При обращении к внешней памяти данных ЦП микроконтроллера генерирует соответствующие сигналы чтения (R D) или записи (W R), взаимодействие с внутренней памятью данных осуществляется на командном уровне, при этом сигналы R D и W R не вырабатываются. Внешняя память программ и внешняя память данных могут комбинироваться путем совмещения сигналов R D и PS EN по схеме "логического И" для получения строба внешней памяти (программ/данных). Нижние 128 байт внутренней памяти данных (lower 128) присутствуют на всех кристаллах MCS-51 и показаны на рис.5. Первые 32 байта представляют собой 4 банка (Register Bank) по 8 регистров (R7...R0). Регистры R0 и R1 в любом из банков могут использоваться в качестве регистров косвенного адреса. Следующие за регистровыми банками 16 байт образуют блок побитно-адресуемого пространства. Набор инструкций MCS-51 содержит широкий выбор операций над битами, а 128 бит в этом блоке адресуются прямо и адреса имею значения от 00Н до 7FH. Все байты в нижней 128-байтной половине памяти могут адресоваться как прямо, так и косвенно. Верхняя 128 байтная половина памяти ОЗУ (upper 128) в микросхеме I-8051 отсутствует, но имеется в версиях кристаллов с 256 байтами ОЗУ. В этом случае область "Upper 128" доступна только при косвенной адресации. Область SFR (Special Function Register) доступна только при прямой адресации. Размещение регистров специальных функций в пространстве SFR показано на рис.6. Они включают в себя регистры портов, таймеры, средства управления периферией и так далее. 9 7FH Побайтно-адресуемая область ОЗУ 30H (direct, indirect) 2FH 7FH 7EH 7DH 7CH 7BH 7AH 79H 78H 2EH 77H 76H 75H 74H 73H 72H 71H 70H Побитно-адресуемая область ОЗУ (direct) 21H 0FH 0EH 0DH 0CH 0BH 0AH 09H 08H 20H 07H 06H 05H 04H 03H 02H 01H 00H 1FH RB3 18H 17H RB2 10H 0FH RB1 08H 07H SP после RESET 00H RB0(R7+R0) Рис.5. Нижние 128 байт внутреннего ОЗУ. побитовая адресация 8 байт F8H FFH F0H B F7H E8H EFH E0H ACC E7H D8H DFH D0H PSW D7H C8H CFH C0H C7H B8H IP BFH B0H P3 B7H A8H IE AFH A0H P2 A7H 98H SCON SBUF 9FH 90H P1 97H 88H TCON TMOD TL0 TL1 TH0 TH1 8FH 80H P0 SP DPL DPH PCO 87H N 0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F Рис.6. Размещение регистров специальных функций в пространстве SFR. Для 16 адресов в пространстве SFR имеется возможность как байтовой, так и битовой адресации. Для побитно-адресуемых регистров шестнадцатеричный адрес заканчивается на "0Н" или на "8Н". Битовые адреса в этой области имеют значения от 80Н до FFH. Вся серия кристаллов семейства MCS-51 имеет базовый набор SFR, как и в микросхеме I- 8051, расположенный по тем же адресам. Однако в кристаллах, представляющих собой дальнейшее развитие семейства в область SFR, добавляются новые регистры для расширения 10

У истоков производства микроконтроллеров стоит фирма Intel с семействами восьмиразрядных микроконтроллеров 8048 и 8051. Архитектура MCS-51 получила свое название от первого представителя этого семейства - микроконтроллера 8051, выпущенного в 1980 году на базе технологии HMOS. Удачный набор периферийных устройств, возможность гибкого выбора внешней или внутренней программной памяти и приемлемая цена обеспечили этому микроконтроллеру успех на рынке. С точки зрения технологии микроконтроллер 8051 являлся для своего времени очень сложным изделием - в кристалле было использовано 128 тыс. транзисторов, что в 4 раза превышало количество транзисторов в 16-разрядном микропроцессоре 8086.

Основными элементами базовой архитектуры являются:
- 8-разрядное АЛУ на основе аккумуляторной архитектуры;
- 4 банка регистров, по 8 в каждом;
- встроенная память программ 4Кбайт;
- внутреннее ОЗУ 128 байт;
- булевый процессор
-2 шестнадцатиразрядных таймера;
- контроллер последовательного канала (UART);
- контроллер обработки прерываний с двумя уровнями приоритетов;
- четыре 8-разрядных порта ввода/вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных;
- встроенный тактовый генератор.

Именно этот микроконтроллер наиболее хорошо известен разработчикам и является популярным средством управления в устройствах самого широкого круга. Имеется множество эмуляторов, отладчиков и программаторов микросхем 8051, поэтому с разработкой программного обеспечения нет никаких трудностей.

Следующим принципиальным шагом в развитии MCS-51 стал перевод технологии изготовления на CHMOS. Это позволило реализовать режимы Idle и Power Down, позволившие резко снизить энергопотребление кристалла и открывшие дорогу к применению микроконтроллера в энергозависимых приложениях, например, в автономных приборах с батарейным питанием.

И последним принципиальным этапом развития этого направления фирмой Intel в рамках 8-битной архитектуры стал выпуск микроконтроллеров 8xC51FA/FB/FC, которые для краткости часто обозначаются как 8xC51FX. Главной отличительной особенностью этой группы кристаллов является наличие у них массива программируемых счетчиков (PCA). Структурная схема PCA представлена на рис.2.

В состав PCA входят:

Таймер-счетчик обслуживает все пять модулей выборки и сравнения, которые могут быть запрограммированы на выполнение одной из следующих функций:

16-битная выборка значения таймера по положительному фронту внешнего сигнала;
16-битная выборка значения таймера по отрицательному фронту внешнего сигнала;
16-битная выборка значения таймера по любому фронту внешнего сигнала;
16-битный программный таймер;
16-битное устройство скоростного вывода (HSO);
8-битный ШИМ

Выполнение всех перечисленных функций происходит в PCA на аппаратном уровне и не загружает центральный процессор, что позволяет повысить общую пропускную способность системы, повысить точность измерений и отработки сигналов и снизить время реакции микроконтроллера на внешние события, что особенно важно для систем реального времени. Реализованный в 8xC51FX PCA оказался настолько удачным, что архитектура микроконтроллеров FX стала промышленным стандартом де-факто, а сам PCA многократно воспроизводился в различных модификациях микроконтроллеров разных фирм.

Изначально наиболее "узкими" местами архитектуры MCS-51 были 8-разрядное АЛУ на базе аккумулятора и относительно медленное выполнение инструкций (для выполнения самых быстрых инструкций требуется 12 периодов тактовой частоты). Это ограничивало применение микроконтроллеров семейства в приложениях, требующих повышенного быстродействия и сложных вычислений (16- и 32- битовых). Насущным стал вопрос принципиальной модернизации старой архитектуры. Проблема модернизации осложнялась тем, что к началу 90-х годов уже была создана масса наработок в области программного и аппаратного обеспечения, и одной из основных задач разработки новой архитектуры была реализация аппаратной и программной совместимости со старыми разработками на базе MCS-51. Для решения этой задачи была создана совместная группа из специалистов компаний Intel и Philips. В результате в 1995 г. появилось 2 существенно отличающихся семейства: MCS-251/151 у Intel и 51XA у Philips (на последнем мы остановимся ниже).

Основные характеристики архитектуры MSC-251:

24-разрядное линейное адресное пространство, обеспечивающее адресацию до 16M памяти (выпускаемые микроконтроллеры семейства MCS-251 имеют адресное пространство памяти объемом 256К);
Система команд микроконтроллеров семейства MCS-251 содержит все 111 команд, входящих в систему команд микроконтроллеров семейства MCS-51 ("старые" команды), и, кроме того, в нее входят 157 "новых" команд. Коды некоторых новых команд имеют формат 4 байт.
Перед использованием микроконтроллера его необходимо сконфигурировать, т.е. с помощью программатора "прожечь" конфигурационные байты, определяющие, какой из наборов инструкций станет активным после включения питания. Если установить набор инструкций MCS-51, то в этом случае MSC-251 будет совместим с MCS-51 на уровне двоичного кода. Такой режим называется Binary Mode. Однако расширенные инструкции в этом режиме также доступны через "форточку" - зарезервированный код инструкции 0A5h. Естественно, длина каждой расширенной инструкции увеличивается в таком случае на 1 байт. Если же изначально установить набор расширенных инструкций, то в этом случае программы, написанные для MCS-51 потребуют перекомпиляции на кросс-средствах для MCS-51, т.к. теперь уже стандартные инструкции будут доступны через ту же "форточку" 0A5h и длина их также увеличится на 1 байт. Такой режим называется Source Mode. Он позволяет с максимальной эффективностью использовать расширенные инструкции и достигнуть наибольшего быстродействия, но требует переработки программного обеспечения.
регистровая архитектура, допускающая обращение к регистрам как к байтам, словам и двойным словам;
страничный режим адресации для ускорения выборки инструкций из внешней программной памяти;
очередь инструкций;
расширенный набор команд, включающий 16-битовые арифметические и логические инструкции;
расширенное адресное пространство стека до 64К;
выполнение самой быстрой инструкции за 2 такта;
совместимость на уровне двоичного кода с программами для MCS-51.

Для пользователей, ориентированных на применение микроконтроллеров MCS-251 в качестве механической замены MCS-51 фирма Intel выпускает микроконтроллеры MCS-251 с уже запрограммированными битами конфигурации в состоянии Binary Mode. Такие микроконтроллеры получили индекс MCS-151.

Помимо самой Intel микроконтроллеры MCS-251 по ее лицензии выпускает компания Temic Semiconductors.

Универсальная последовательная шина (Universal Serial Bus или USB), распространяет технологию Plug-and-Play на внешние устройства ввода/вывода, применяемые на современных высокопроизводительных персональных компьютерах.

Для того, чтобы обеспечить возможность подключения разнообразных периферийных устройств, в стандарте USB определены четыре режима передачи: Управляющий, Изохронный, Импульсный и передача массивов. Каждое периферийное устройство должно поддерживать управляющий режим для передачи параметров конфигурации, команд и информации о состоянии устройства. Изохронная передача обеспечивает гарантированный доступ к шине, постоянную пропускную способность и устойчивость к ошибкам, этот режим передачи может применяться в устройствах аудиовывода и компьютерной телефонии. Импульсная передача предназначена для устройств ввода типа мыши, джойстика или клавиатуры, передающих информацию редко и небольшими порциями, но с ограниченным периодом обслуживания. Передача массивов позволяет устройствам типа сканеров, факсов или цифровых камер передавать большие массивы данных в персональный компьютер, как только освобождается канал шины.

Основные характеристики продукта

Полная совместимость со "Спецификацией Universal Serial Bus 1.0"
Встроенный USB transceiver Serial Bus Interface Engine (SIE)
Четыре очереди FIFO для передачи
Три 16-байтных очереди FIFO
Четыре очереди FIFO для приема
Три 16-байтных очереди FIFO
Одна настраиваемая очередь FIFO (до 1024 байт)
Автоматическое управление приемом/передачей в очередях FIFO
Операции остановки/возобновления
Три вектора прерывания шины USB
Цикл блокировки фазы
Скорости передачи данных: 12 Мбит/сек и 1,5 Мбит/сек
Режим с замедленным циклом
Внешнее адресное пространство емкостью 256 Кбайт
Энергосберегающие режимы: ожидание и отключение питания
Задаваемые пользователем параметры
Ожидание в реальном времени
1 Кбайт оперативной памяти на кристалле
Четыре порта ввода/вывода
Программируемый массив счетчиков (PCA)
Стандартный (MCS 51) микроконтроллер UART
Аппаратный сторожевой таймер
Три 16-разрядных таймера/счетчика с гибкими возможностями
Совместимость с набором команд микроконтроллеров архитектуры MCS 51 и MCS 251
Архитектура микроконтроллера MCS 251, основанная на регистрах
Рабочая частота 6 или 12 МГц

Контроллер 8x930Hx имеет дополнительные характеристики:

Концентратор USB
Возможности управления концентратором USB
Управление соединением
Обнаружение соединения/разрыва связи с устройством вывода
Управление питанием, включая остановку/возобновление
Обнаружение и восстановление сбоев шины
Поддержка полноскоростных и низкоскоростных устройств вывода
Выходной контакт для переключения питания порта
Входной контакт для обнаружения перегрузки

Четыре различных режима передачи данных USB обеспечиваются совместной работой трех элементов: Хост, Концентратор, Функциональное устройство. Хост контролирует передачу по шине содержательной и управляющей информации. Функциональные устройства расширяют хост-системы. Сюда включаются типичные виды работы с PC: ввод с клавиатуры или джойстика, вывод на монитор; а также более сложные виды деятельности, такие как цифровая телефония и передача изображений. Для управления функциональными устройствами спроектирован микроконтроллер Intel 8x930Ax. Наконец, концентраторы представляют собой точку расширения USB, с помощью которой обеспечивается доступ к другим функциональным устройствам. Микроконтроллер Intel 8x930Hx, в котором совмещены функции управления функциональным устройством и концентратором USB, является первым серийным концентратором USB, предназначенным для современных периферийных устройств PC.

Концентраторы USB играют существенную роль в расширении мира пользовател PC. С появлением периферийных устройств - клавиатур, мониторов, принтеров и других - снабженных встроенными концентраторами, подключить или отключить новое устройство так же просто, как вставить вилку в розетку. Новый уровень производительности и расширенные способы соединения USB могут привести к появлению устройств для рабочих и развлекательных приложений нового поколения. Дни встраиваемых карт, конфликтов IRQ и спутанных клубков проводов сочтены.

Кабель шины USB состоит всего из четырех проводов: Vbus, D+, D- и GND - чем достигается упрощение и единообразие соединения. Этой же цели служит единый стандартный коннектор для подключения периферийных устройств к шине USB. Данные по-разному передаются по кабелям D+ и D-: либо на полной скорости 12 Мбит/сек, либо на низкой скорости 1,5 Мбит/сек. Приемопередатчик встроен в кристалл, поэтому необходимость во внешних электронных цепях отсутствует. Исключение составляет терминальный нагрузочный резистор на обоих линиях D+ и D-, который необходим для определения типа устройства: высокоскоростное или низкоскоростное.

Обзор семейства
Семейство Intel 8x930 состоит из двух однокристальных контроллеров.

Контроллер Intel 8x930Ax представляет собой 8-разрядное устройство, которое основано на архитектуре микроконтоллера MCS 251 и предназначено для работы с периферийными устройствами, подключаемыми к шине USB. С другой стороны, в 8x930Hx использовано то же ядро микроконтроллера MCS 251 плюс расширенные возможности встроенного концентратора шины USB. Применение архитектуры MCS 251 в обоих контроллерах шины USB дает следующие преимущества:

Высокая производительность
Применение смешанных типов памяти и адресации
Низкое энергопотребление
Низкий уровень шума
Эффективная поддержка языков высокого уровня
Расширенный набор команд
Встроенные возможности

В качестве команд для 8x930Ax можно использовать инструкции как из набора для микроконтроллера MCS 51, так и из набора для микроконтроллера MCS 251. Такой подход сохраняет инвестиции пользователей в программное обеспечение и выжимает максимум производительности из приложений.

Микроконтроллеры 8x930 настолько насыщены различными встроенными средствами, что они выглядят мощнее, нежели просто микроконтроллеры. Массив программируемых счетчиков (PCA) придает гибкость приложениям, которым требуется сравнение или захват данных в реальном времени, высокоскоростной обмен данными или широтно-импульсная модуляция. Кроме того, в состав контроллера вошли расширенный последовательный порт, три 16-разрядных таймера/счетчика, аппаратный сторожевой таймер, четыре 8-разрядных порта ввода/вывода, а также предусмотрены два энергосберегающих режима: ожидание и отключение питания.

Контроллеры семейства 8x930Ax оснащены 1 Кбайт памяти и могут быть использованы в вариантах без постоянной памяти, либо с постоянной памятью емкостью 8 или 16 Кбайт. Они могут адресовать до 256 Кбайт внешней памяти для размещения команд и данных и 40 байт регистров общего назначения, которые располагаются в центральном процессоре как регистровый файл. В зависимости от используемой комбинации в регистровом файле могут располагаться 16 байтовых регистров, 16 двухбайтовых регистров и 10 четырехбайтовых регистров.

В контроллерах предусмотрен гибкий интерфейс с внешней памятью. Дл обращения к устройствам с медленной памятью имеется возможность добавлени трех циклов ожидания, а для генерации большего количества циклов - обращение к функции реального времени. Выборка внешних команд может повысить производительность за счет использования страничного режима, при котором данные перебрасываютс в старшем байте адреса.

Оба контроллера 8x930 оснащены восемью очередями FIFO для поддержки внутренних устройств вывода: четыре очереди для передачи и четыре очереди для приема. Четыре очереди FIFO для приема/передачи поддерживают четыре оконечных функциональных устройства (от 0 до 3). Очередь 0 состоит из 16 байт и предназначена для передачи управляющей информации. Очередь 1 относитс к категории настраиваемых пользователем и имеет емкость до 1024 байт. Очереди 2 и 3 состоят из 16 байт каждая и могут использоваться для передачи информации в импульсном, изохронном и режиме передачи массивов. В случае использования контроллера 8x930Hx указанные очереди усиливаются парой очередей FIFO для входных устройств. Эти очереди в контроллере 8x930Hx поддерживаются дополнительным повторителем, который отвечает за повторную передачу потоков данных, генерируемых выходными устройствами.

Обзор архитектуры
Конструкционно реализацию USB в микроконтроллерах 8x930Ax и 8x930Hx можно разделить на четыре блока: очереди FIFO, блок интерфейса с функциональными устройствами, блок интерфейса с последовательной шиной и приемо-передатчик. Контроллер 8x930Hx имеет длополнительные блоки для управления функциями концентратора: блок интерфейса с концентратором и повторитель.

Очереди FIFO для приема и передачи на обоих контроллерах являются кольцевыми. Очереди поддерживают до двух раздельных наборов данных переменного размера и содержат регистры счетчика байтов, показывающие количество байтов в наборах данных. Очереди снабжены флажками, показывающими заполненность или пустоту очереди, а также способны повторять прием или передачу текущего набора данных. Блок интерфейса с функциональными устройствами (ИФУ) распределяет переданные или принятые данные USB в соответствии с типом передачи и состоянием очередей. Кроме того, блок ИФУ следит за состоянием транзакции, управляет очередями FIFO, при помощи запроса на прерывание сообщает о наступлении управляющих событий центральному процессору 8x930.

Блок интерфейса с последовательной шиной реализует протокол передачи USB: последовательно упорядочивает пакеты, осуществляет генерацию и распознавание сигнала, генерацию и проверку контрольных сумм, кодирование/декодирование данных по методу NRZI, побитовое заполнение, генерацию и распознавание идентификатора пакета (PID).

Интегрированный приемо-передатчик на микроконтроллерах USB согласован с простым четырех-жильным интерфейсом, определенным спецификаицей USB 1.0. Семейство контроллеров 8x930 имеет три прерывания, связанных с USB. Они происходят при каждом старте кадра, окончании приема/передачи данных на оконечные функциональные устройства, в случае глобальной приостановки или возобновления работы. В концентраторе 8x930Hx блок интерфейса с концентратором служит для управления и слежения за состоянием соединени с выходными портами. Повторитель отвечает за распространение сигналов повышающих и понижающих портов USB.

В настоящее время различными фирмами выпускается множество модификаций и аналогов этого семейства, как фирмой Intel, так и другими производителями, тактовая частота и объем памятивозросли в десятки раз и продолжают повышаться. Дополняется и набор встроенных в БИС модулей, в большое число современных моделей встроен рези- дентный быстродействующий АЦП, имеющий до 12, а сейчас может быть и более разря- дов. Но в основе семейства МСS51 БИС 8051, 80С51, 8751, 87С51, 8031, 80С31 фирмы Intel, первые образцыкоторыхбыли выпущеныв 1980 году.

Микроконтроллеры семейства MCS51 выполнены по высококачественной n-МОП технологии (серия 8ХХХ, аналог - серия 1816 в России и Белоруссии) и k-МОП техноло- гии (серия 8ХСХХ, аналог - серия 1830). Второй символ, следующий за 8 означает: 0 – РПЗУ на кристалле нет, 7 – РПЗУ объемом 4К с ультрафиолетовым стиранием. Третий символ: 3 – ПЗУ накристалленет, 5 – если нетРПЗУ, то на кристалле масочное ПЗУ.

И так 80С51 – БИС по k-МОП технологии с масочным ПЗУ на кристалле, 8031 – БИС n-МОП без памяти программ (ПЗУ, РПЗУ) на кристалле, 8751 – БИС n-МОП с ре- зидентным (размещенным на кристалле) РПЗУ с ультрафиолетовым стиранием. Мы да- лее и будем рассматривать БИС 8751, делая, если нужно оговорки об отличиях других схем, приводя те параметры, которые были опубликованы для первых серийных БИС. Дополнительную информацию о всех современных модификациях Вы, при необходимо- сти, можете найти в фирменных справочниках и технической документации.

А. Общие характеристики и назначение выводов

Основу семейство MCS51 составляет пять модификаций МК (имеющих идентич- ные основные характеристики), основное различие между которыми состоит в реали- зации памяти программ и мощности потребления (см. таблицу 3.1). Микроконтоллер восьмиразрядный, т.е. имеет команды обработки восьмиразрядных слов, имеет Гарвард- скую архитектуру, тактовая частота у базовых образцов семейства составляет 12 МГц.

Таблица 3.1.

Микро- схемы

Внутренняя память про- грамм, байт

Тип памяти программ

Внутренняя память данных, байт

Тактовая частота, МГц

Ток потреб- ления, мА

МК 8051 и 80С51 содержат масочно-программируемое при изготовлении кристалла ПЗУ памяти программ емкостью 4096 байт и рассчитаны на применение в массовой продукции. МК 8751 содержит РПЗУ емкостью 4096 байт с ультрафиолетовым стиранием и удобна на этапе разработки системы при отладке программ, а также при производстве не- большими партиями или при создании систем, требующих в процессе эксплуатации пе-

риодической подстройки.

МК 8031 и 80С31 не содержат встроенной памяти программ. Они, как и описанные ранее модификации могут использовать до 64 Кбайт внешней памяти программ и эффек- тивно использоваться в системах, требующих существенно большего по объему (чем 4 Кбайт на кристалле) ПЗУ памяти программ.

Каждый МК семейства содержит резидентную память данных емкостью 128 байт с возможностью расширения общего объема оперативной памяти данных до 64 Кбайт за счет использования внешних ИС ОЗУ.

    центральный восьмиразрядный процессор;

    память программ объемом 4 Кбайт (только 8751 и 87С51);

    память данных объемом 128 байт;

    четыре восьмиразрядных программируемых порта ввода-вывода;

    два 16-битовых многорежимных таймера/счетчика;

    систему автовекторных прерываний с пятью векторами и двумя программно управ- ляемыми уровнями приоритетов;

    последовательный интерфейс, включающий универсальный дуплексный приемопе- редатчик, способный функционировать в четырех режимах;

    тактовый генератор.

Система команд МК содержит 111 базовыхкомандс форматом1, 2, или 3 байта. Микроконтроллер имеет:

    32 регистра общего назначения РОН, организованных как четыре банка по восемь регистров с именами R0… R7, выбор того или иного банка определяется программой пу- тем установки соответствующих бит в регистре состояния программы PSW;

    128 программно-управляемых флагов (битовый процессор, см. далее);

    набор регистров специальных функций, управляющих элементами МК. Существуют следующие режимы работы микроконтроллера:

1). Общий сброс. 2).Нормальное функционирование. 3).Режим пониженно- го энергопотребления и режимхолостого хода. 4). Режим программирования ре- зидентного РПЗУ, если оно есть.

Мы здесь основное внимание уделим первым двум режимам работы, подробное описаниесоставаи работыМКвовсех режимахприведено в приложенииП1.

РОН и зона битового процессора расположены в адресном пространстве рези- дентной ОЗУ с адресами от 0 до80h.

В верхней зоне адресов резидентной оперативной памяти расположены регистры спе- циальных функций (SFR, Special Function Registers). Их назначение приведено в табл. 3.2.

Таблица 3.2.

Обозначение

Наименование

Аккумулятор

Регистр В

Регистр состояния программы

Указатель стека

Указатель данных. 2 байта:

Младший байт

Старший байт

Регистр приоритетов прерываний

Регистр разрешения прерываний

Регистр режимов таймера/счетчика

Регистр управления таймера/счетчика

Таймер/счетчик 0. Старший байт

Таймер/счетчик 0. Младший байт

Таймер/счетчик 1. Старший байт

Таймер/счетчик 1. Младший байт

Управление последовательным портом

Буфер последовательного порта

Управление потреблением

* - регистры, допускающие побитовую адресацию

Кратко рассмотрим функции регистров SFR, приведенных в таблице 3.2.

Аккумулятор АCC - регистр аккумулятора. Команды, предназначенные для рабо-

ты с аккумулятором, используют мнемонику "А", например, MOV А, Р2 . Мнемоника "АСС" используется, к примеру, при побитовой адресации аккумулятора. Так, символи- ческое имя пятого бита аккумулятора при использовании ассемблера А5М51 будет сле- дующим: АСС. 5. .

Регистр В . Используется во время операций умножения и деления. Для других инструкций регистр В может рассматриваться как дополнительный сверхоперативный регистр.

Регистр состояния программы PSW содержит информацию о состоянии про- граммы и устанавливается частично автоматически по результату выполненной опера- ции, частично пользователем. Обозначение и назначение разрядов регистра приведены соответственно в таблицах 3.3 и 3.4.

Таблица 3.3.

Обозначение

Таблица 3.4.

Обозна- чение

Назначение битов

Доступ к биту

Флаг переноса. Изменяется во время выполнения ряда арифметических и логических инструкций.

Аппаратно или программно

Флаг дополнительного переноса. Аппаратно уста- навливается/сбрасывается во время выполнения инструкций сложения или вычитания для указания переноса или заема в бите 3 при образовании младшего полубайта результата (D0-D3).

Аппаратно или программно

Флаг 0. Флаг, определяемый пользователем.

Программно

Программно

Указатель банка рабочих регистров

Программно

Банк 0 с адресами (00Н - 07Н) Банк 1 с адресами (08Н – 0FН) Банк 2 с адресами (10Н - 17Н) Банк 3 с адресами (18Н – 1FН)

Флаг переполнения. Аппаратно устанавливается или сбрасывается во время выполнения арифмети- ческих инструкций для указания состояния пере- полнения

Аппаратно или программно

Резервный. Содержит триггер, доступный по запи- си и чтению, который можно использовать

Бит четности. Аппаратно сбрасывается или уста- навливается в каждом цикле инструкций для указа- ния четного или нечетного количества разрядов ак- кумулятора, находящихся в состоянии "1".

Аппаратно или программно

Указатель стека - 8-битовый регистр, содержимое которого инкрементирует- ся перед записью данных в стек при выполнении команд PUSH и CALL. При начальном сбросе указатель стека устанавливается в 07Н, а область стека в ОЗУ данных начинается с адреса 08Н. При необходимости путем переопределения указателя стека область стека может быть расположена в любом месте внутреннего ОЗУ данных микроконтроллеры.

Указатель данных DPTR состоит из старшего байта (DPH) и младшего байта

(DPL). Содержит 16-битовый адрес при обращении к внешней памяти. Может использо-

ваться как 16-битовый регистр или как два независимых восьмибитовых регистра.

Порт0 - ПортЗ. Отдельными битами регистров специальных функций Р0, Р1, Р2, РЗ являются биты -"защелки" выводов портовР0, Р1, Р2, РЗ.

Буфер последовательного порта SBUF представляет собой два отдельных реги- стра: буфер передатчика и буфер приемника. Когда данные записываются в SBUF, они поступают в буфер передатчика, причем запись байта в SBUF автоматически иницииру- ет его передачу через последовательный порт. Когда данные читаются из SBUF, они вы- бираются из буфера приемника.

Регистры таймера. Регистровые пары (ТН0, ТL0) и (ТН1, TL1) образуют 16-

битовые счетные регистры соответственно таймера/счетчика 0 и таймера/счетчика 1.

Регистры управления. Регистры специальных функций IР, IЕ, ТМOD, ТСОN, SCON и РСОN содержат биты управления и биты состояния системы прерываний, тай-

меров/счетчиков и последовательного порта. Они будут подробно рассмотрены далее.

RxD TxD INT0 INT1 T0 T1 WR

P1.2 P1.3 P1.4 P1.5 P1.6 P1.7

RST BQ2 BQ 1 EA

P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7

P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7

P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7

МК при функционировании обеспечивает:

    минимальное время выполнения команд сложения-1 мкс;

    аппаратное умножение и деление с минимальным време- нем выполнения - 4 мкс.

В МК предусмотрена возможность задания частоты внутреннего генератора с помощью кварца, LС-цепочки или внешнего генератора.

Расширенная система команд обеспечивает побайтовую и побитовую адресацию, двоичнуюи двоично-десятичную арифметику, индикацию пере- полнения и определения четности/нечетности, воз- можность реализации логического процессора.

Важнейшей и отличительной чертой архитек- туры семейства MCS51 является то, что АЛУ может наряду с выполнением операций над 8-разрядными типами данных манипулировать одноразрядными данными. Отдельные программно-доступные биты могут быть установлены, сброшены или заменены их дополнением, могут пересылаться, проверяться и

Рис.3.2. Внешние выводы

микроконтроллера

использоваться в логических вычислениях. Тогда как поддержка простых типов данных (при сущест-

вующей тенденции к увеличению длины слова) может с первого взгляда показаться ша- гом назад, этокачестводелает микроконтроллеры семействаMCS51 особенно удобными для применений, в которых используются контроллеры. Алгоритмы работы по- следних по своей предполагают наличие входных и выходных булевых переменных, которые сложно реализовать при помощи стандартных микропроцессоров. Все эти свой- ства в целом называются булевым процессором семейства MCS51. Благодаря такому мощному АЛУ набор инструкций микроконтроллеры семейства MCS51 одинаково хоро- шо подходит как для применений управления в реальном масштабе времени, так и для ал- горитмов с большим объемом данных.

Схемотехническое изображение микроконтроллера представлено на рис. 3.2. В ба- зовом варианте он упакован в 40-выводной DIP корпус. Рассмотрим назначение выводов.

Начнем с выводов питания «0 В» и «5 В» , по которым он получает основное пита- ние. Ток потребления приведен в табл. 3.1.

Вывод «RST» - сброс микроконтроллера. При подаче на этот вывод активного вы- сокого уровня запускается режим общего сброса и МК производит следующие действия:

Устанавливает счетчик команд PC и все регистры специальных функций, кроме защелок портов Р0-РЗ, указателя стека SP и регистра SBUF, в ноль;

    указатель стека принимает значение равное 07Н;

    запрещает все источники прерываний, работу таймеров-счетчиков и последовательного

    выбирает БАНК 0 ОЗУ, подготавливает порты Р0-РЗ для приема данных и опре-

деляет выводы ALE и РМЕ как входы для внешней синхронизации;

      в регистрах специальных функций PCON, IP и IE резервные биты при- нимают случайные значения, а все остальные биты сбрасываются в ноль;

      в регистре SBUF устанавливаются случайные значения.

      устанавливает фиксаторы-защелки портов Р0-РЗ в "1".

Состояния регистров микроконтроллера после сброса приведены в таблице 3.5.

Таблица 3.5.

Информация

Неопределенная

0ХХХ0000В для k-MOП 0XXXXXXXB для n-МОП

Вывод RST имеет и альтернативную функцию. Через него подается резервное питания для сохранения неизменным содержимого ОЗУ микроконтроллера при снятии основного.

Выводы BQ1, BQ2 предназначены для подключения кварцевого резонатора, оп- ределяющего тактовую частоту работы МК.

Вывод ЕА` (E xternal A dress внешний адрес) - предназначен для активизации ре- жима чтенияуправляющих кодов из внешней памяти программ, при подаче на этот вывод активного низкогоуровня. Вывод имеет иальтернативное назначение (функцию). На него подается напряжение программирования РПЗУ в режиме программирования.

Вывод PME (P rogram M emory E nable разрешение памяти программ ) - предна- значен для управления циклом чтения из памяти программ и автоматически активизиру- ется МК в каждом машинном цикле.

Вывод ALE (A dress L ength E nable разрешение младшего адреса) стробирует вы- вод младшей части адреса по порту Р0. Вывод используется и при программировании РПЗУ, при этом на него подается стробирующий процесс программирования импульс.

МК содержит четыре группы портов: Р0, Р1, Р2, и Р3. Это оставшиеся из 40-авыводов микроконтроллера. Эти порты могут служитьдля побитного ввода – вывода информации, но помимо этого каждый из них имеет свою специализацию. Обобщенная функциональная схе- ма порта представлена на рис. 3.3. Порт содержит выходные ключи на полевых транзисторах, подключенные к выводу, переключатель функций, защелку на D-триггере и логику управле- ния. Взащелку по внутреннейшине МК можетбытьзаписана единица илиноль. Эта инфор- мация через переключатель функций поступает на выходные ключи и вывод МК. В состоя- нии единицы оба транзистора N и N1 закрыты, но открыт N2. В состоянии нуля N открывает-

ся, а N2 закрывается. В момент, когда порт выполняет альтернативную функцию, на которую онспециализирован, состояние защелкис вывода снимается. Микроконтроллер отдельно мо- жет считать состояние защелки порта и состояние его вывода, установленное внешним сигна- лом. Для этого в ассемблере МК имеются специальные команды, активизирующие соответст- вующие линии. Для чтения состояния вывода в защелку соответствующего порта должна

быть предварительно записана

От внутрен-

Управление Защелка

Переключатель функций

Vcc

Выходные

единица. При активизации линии «чтение защелки» на выходе ячейки «И», к которой подключенаэта линияпоявля-

ней шины МК D Q

Запись в защелку C Q

Чтение защелки

Вывод порта

ется состояние защелки, по- ступающее на внутреннюю шину МК, при активизации

«чтение вывода» - состояние внешнего вывода порта.

Порт Р0 – универсаль- ный двунаправленный порт

ввода-вывода. За этим портом

закреплена функция организа- ции внешних шин адресов и

Рис. 3.3. Функциональная схема порта микроконтроллера

данных для расширенияпамя- ти программ и памяти данных

микроконтроллера. Когда идет обращение к внешней памяти программ или выполняется ко- манда обращения к внешней памяти данных, на выводах порта устанавливается младшая часть адреса (А0…А7), которая стробируется высоким уровнем на выводе ALE. Затем, при записи в память данных, записываемая информация с внутренней шины МК поступает на выводы порта Р0. В операциях чтения, наоборот, информация с выводов порта поступает на внутреннюю ши- ну. Особенностью порта Р0 является отсутствие «подтягивающего» транзистора N2, обеспечи- вающего подачу питания на вывод. При записи в защелку порта единицы он просто переводит- ся в высокоимпедансное состояние, что необходимо для нормальной работы шины данных. При необходимости запитывать через вывод какие либо внешние устройства, следует преду- сматривать внешние резисторы от цепей питания на вывод порта.

Порт Р1 – универсальный двунаправленный порт ввода-вывода без альтернатив- ных функций.

Порт Р2 – универсальный двунаправленный портввода-вывода, в качестве альтер- нативной функции осуществляющий выдачу старшей части адреса (А8…А15) при обра- щении к внешней памяти.

Порт Р3 – универсальный двунаправленный порт ввода-вывода, каждый бит кото- рого предусматривает выполнениеразличныхальтернативных функций. Приэтом альтер- нативные функции реализуются только в том случае, если в защелки выводов порта запи- саны единицы, в противном случае выполнение альтернативных функций блокируется. Перечислим их раздельно для каждого бита:

Р3.0 RxD (R ead eX ternal D ate, читать внешние данные) – вход встроенного после- довательного приемо-передатчика.

Р3.1 ТxD (T ype eX ternal D ate, передавать внешние данные) – выход встроенного последовательного приемо-передатчика.

Р3.2 INT0` (INT errupt, прерывание) – вход внешнего прерывания 0.

Р3.3 INT1` – вход внешнего прерывания 1.

Р3.4 С/T0 – вход нулевого встроенного таймера/счетчика.

Р3.5 С/T1 – вход первого встроенного таймера/счетчика.

Р3.6 WR` (W rite, писать) – вывод управления циклом записи в памяти данных.

Р3.7 RD` (R ead, читать) – вывод управления циклом чтения из памяти данных.

Выводы портаР1, Р2 и Р3 способны в единице выдавать тококоло0.2мА и принимать в нуле ток 3 мА, выводы порта Р0 мощнее и способны в единице выдавать ток около 0.8мА и при- нимать в нуле ток 5 мА. Краткая информация о назначении выводов микроконтроллера приведе- на в таблице 3.6.

Таблица 3.6.

Обозначение

Назначение вывода

8-разрядныи двунаправленный порт Р1. Вход адреса А0-А7 при проверке внутреннего ПЗУ (РПЗУ)

вход/ выход

Сигнал общего сброса. Вывод резервного пита- ния ОЗУ от внешнего источника (для 1816)

8-разрядный двунаправленный порт P3 с допол- нительными функциями

вход/ выход

Последовательные данные приемника - RхD

Последовательные данные передатчика - ТхD

Вход внешнего прерывания 0- INТ0`

Вход внешнего прерывания 1-INT1`

Вход таймера/счетчика 0: - Т0

Вход таймера/счетчика 1: - Т1

Выход стробирующего сигнала при записи во внешнюю память данных: - WR`

Выход стробирующего сигнала при чтении из внешней памяти данных – RD`

Выводы для подключения кварцевого резонато- ра.

выход вход

Общий вывод

8-разрядный двунаправленный порт Р2. Выход адреса А8-А15 в режиме работы с внешней па- мятью. В режиме проверки внутреннего ПЗУ выводы Р2.0 - Р2.6 используются как вход адреса А8-А14. Вывод Р2.7 - разрешение чтения ПЗУ.

вход/ выход

Разрешение программной памяти

Выходной сигнал разрешения фиксации адреса. При программировании РПЗУ сигнал: PROG

вход/ выход

Блокировка работы с внутренней памятью. При программировании РПЗУ подается сигнал UРR

вход/ выход

8-разрядный двунаправленный порт Р0. Шина адреса/данных г работе с внешней памятью. Вы- ход данных D7-D0 в режиме проверки внутрен- него ПЗУ (РПЗУ).

вход/ выход

Вывод питания от источника напряжения +5В