Подготовка к эксплуатации

Объёмная 3D печать материального объекта по его трёхмерной компьютерной модели - это уникальная технология современности, которую ожидают большие перспективы в будущем. Ещё недавно устройства, использующие её, казались фантастикой, а сегодня они превратились в реальность, и стали уже доступными даже для домашнего пользования. Хотя стоимость 3D-принтеров ещё высока, и превышает цену других, компьютерных девайсов, они находят всё большее практическое применение не только для прикладного творчества, но и для различных сфер бизнеса. Постоянное развитие и совершенствование этой технологии уже привело к созданию промышленных устройств. Какой из них выбрать?

Что собой представляет 3D-принтер, его назначение

Периферийное компьютерное устройство, которое по цифровой объёмной модели создаёт материальный объект путём послойного нанесения быстро затвердевающего материала, называется 3D-принтером. Для работы такого устройства требуется компьютерная трёхмерная модель, выполненная в любом из 3D-редакторов либо полученная на 3D-сканере. Сегодня существует несколько разновидностей, в зависимости от используемой технологии:

  • FDM и DIW 3D-принтеры, применяющие метод экструзии, основанный на продавливании расплавленного материала через тонкое отверстие в специальном устройстве, называемом экструдер (в принтерах первого типа на охлаждаемую поверхность платформы послойно наносится разогретый до предела плавления термопластик, а во втором - керамический шлам, который называют чернилами, в крупных архитектурных моделях может применяться густой керамический шлам);

    Принтеры для 3D-печати, работающие по экструзионной технологии (FDM) изготавливают макет путём послойной укладки расплавленного пластика, выдавливаемого через экструдер. Печатающая головка движется по осям X и Y, а печатная платформа - вниз по оси Z

  • принтеры типа SLA-DLP, использующие метод фотополимеризации, при котором применяется жидкий фотополимер, а затвердение каждого его слоя производится путём засвечивания ультрафиолетовым лазером;

    В 3D-принтерах, построенных на технологии SLA, изделиеие формируется в ванночке, заполненной фотополимерной смолой. Под действие УФ излучения лазера, действующего на тонкий слой смолы, она затвердевает и основание опускается вниз на толщину следующего слоя

  • принтеры, в которых для создания трёхмерного материального объекта используется выровненный слой порошка, скрепляющийся послойно различными методами, путём нанесения клея способом струйной печати (3DP-принтеры) или его плавления электронным лучом в вакууме (EBM), лазерным излучением (SLS или DMLS, в зависимости от типа порошка) и нагревательной головкой (SHS);
  • EBF 3D-принтеры, в которых для получения материальной модели применяется проволока, расплавляющаяся под действием электронного излучения;
  • принтеры, построенные на принципе ламинирования, или послойного нанесения плёнки, в каждом слое которой, вырезается контур детали специальным резаком или лазером;
  • принтеры с точечной подачей порошка, расплавляемого лазерным или электронным излучением;
  • устройства, работающие с использованием метода многоструйного моделирования (MJM), когда способом струйной печати наносится быстро застывающий материал;
  • биопринтеры - инновационные периферийные компьютерные устройства, которые только начинают внедряться, они используют клетки живого организма для формирования внутренних органов, и в будущем будут способны создавать полноценный материал для трансплантологии (уже имеются случаи успешного изготовления и пересадки челюсти для человека и щитовидной железы для лабораторной мыши).

Видео: как работает механизм

Возможности у такого уникального периферийного компьютерного устройства практически неограничены. Сегодня он уже применяется для следующих целей:

  • быстрого создания точных макетов в архитектурном проектировании, конструировании различных механизмов и машин, а также в дизайне интерьеров и ландшафта с целью доработки проекта и презентации его заказчику;
  • изготовления любых деталей сложной формы для единичного или мелкосерийного производства, а также запчастей для ремонта различных устройств;
  • изготовления моделей и форм для литья, в том числе и при создании ювелирных изделий;
  • строительства зданий и сооружений любой сложности, для чего используют специальные устройства, напоминающие башенный кран, вместо тросов у которого имеются магистрали для подачи жидкого бетона (такое устройство позволяет возводить 1 этаж за 10 часов, что значительно сокращает сроки строительства);
  • создания протезов и внутренних органов для трансплантации в медицине;
  • изготовления макетов сложных устройств для наглядных пособий учебных заведений;
  • создания геоинформационных систем, представляющих собой объёмную карту местности в цвете, с точным отображением рельефа;
  • производства предметов домашнего обихода, различных аксессуаров и предметов для украшения интерьера;
  • разработки макетов упаковок и ёмкостей для маркетинговых целей;
  • изготовление корпусов экспериментальной техники - автомобилей, систем автоматизации и различных электронных устройств;
  • изготовления рекламной и сувенирной продукции;
  • производства эксклюзивной одежды и обуви по фигуре и размерам конкретного клиента, полученным путём 3D сканирования.

Этот перечень наглядно демонстрирует перспективы применения 3D-принтеров и их востребованность в самых разных сферах человеческой деятельности.

Как выбрать: параметры, на которые нужно обращать внимание

Покупая любое сложное устройство, нужно чётко определить для себя цели, для которых вы собираетесь его использовать. От этого будет зависеть какие рабочие параметры его вам лучше подойдут. Учитывая, что такое периферийное устройство стоит недёшево, следует наиболее тщательно подбирать его, учитывая все рабочие параметры, чтобы потом не пожалеть о покупке.

Прежде всего, нужно определиться с типом принтера по применяемой технологии 3D печати. Самые популярные и доступные модели сегодня для домашнего пользования или занятий малым бизнесом - это:

  • FDM принтеры, в качестве материала использующие полимерную нить из пластика различных видов, и имеющие довольно хорошее качество печати и наиболее низкую цену;
  • SLA устройства на фотополимерах, имеющие более высокое качество печати и цену, идеально подходящие для производства ювелирных изделий;
  • наиболее дорогие из периферийных устройств этой группы - приборы SLS типа, которые расплавляют порошок лазером, покупать их для дома нецелесообразно, и они могут подойти лишь для бизнеса, из-за высокой стоимости (до 30 тысяч долларов).

Среди основных критериев выбора можно отметить следующие:

  1. Тип применяемого для печати материала. Выбирая 3D-принтер, нужно учитывать, что расходный материал для устройств типа FMD будет стоить дешевле, чем для SLA-принтеров. Для тех, кто решил приобрести FDM-принтер, существует большой выбор пластиков разных расцветок и видов (PLA, ABS, HIPS, PVA и другие), но идеальным для новичков будет полимерная нить из PLA пластика, поскольку этот материал более лёгкий в пользовании, и изделия из него получаются идеально ровными и гладкими. Для выбравших же 3D-принтер SLA придётся приобретать более дорогой материал в виде фотополимерных смол. К непрофессиональным моделям принтеров лучше всего покупать фотополимер серий Vera, Somos или Tanga, отличающиеся прозрачностью, высокой прочностью, термостойкостью и стабильностью пластика.
  2. Точность печати. Она более высокая у принтеров SLA. Точность же воспроизведения модели в устройствах экструзионного типа во многом зависит от толщины слоя, который укладывается принтером при печати. А значит, чем тоньше отверстие сопла экструдера, тем выше и чёткость воспроизведения цифровой модели в материальном объекте. Сегодня выпускаются модели принтеров с разным диаметром отверстия сопла от 0,1 до 0,4 мм. При этом нужно понимать, что чем меньше отверстие сопла экструдера, тем больше времени уйдёт на изготовление модели. Здесь каждый должен выбирать сам, что для него важнее - точность отображения 3D-модели или скорость печатания.
  3. Область печати, определяющая какого максимального размера объект можно распечатать данным принтером. Имеется, конечно, возможность изготавливать и объекты большего размера, но только по частям, склеивая их специальным клеем. Для этого с помощью программы 123D Make цифровая модель разбивается на отдельные части. Но, если вы не хотите заниматься склеиванием, то при выборе принтера сопоставляйте желаемые размеры изготавливаемых макетов с областью печати конкретной модели.
  4. Особенности конструкции. Здесь имеет значение открытая она или закрытая, и из каких материалов изготовлен корпус и несущие элементы. Эти факторы больше всего влияют на жёсткость всей конструкции, от которой зависит скорость передвижения печатающей головки, а также способность несущих частей устройства гасить колебания и вибрацию от нескольких электродвигателей, отвечающих за перемещение головки принтера по всем трём осям (X, Y и Z) и его стола по оси Z. Изготовленный из дерева корпус хоть и покажется кому-то слишком бюджетным вариантом, но зато он отлично поглощает колебания. Изготовленные же из алюминия или стали несущие конструкции будут более прочными и долговечными. Принтеры типа SLA лучше покупать с хорошо проветриваемой рабочей камерой, что будет способствовать более быстрому отвердеванию фотополимера. А для устройств FDM типа, особенно при работе с ABS пластиком или нейлоном, имеющими высокую степень усадки при быстром остывании, лучше приобрести 3D-принтер с закрытым корпусом и облицовкой рабочей зоны.
  5. Наличие вспомогательного софта. Принтеры для объёмной печати - это высокотехнологичные компьютерные устройства, для работы которых требуются специальные программы. Прежде всего, 3D-принтер должен распознавать и уметь читать все 3D-редакторы и различные форматы ввода данных. К последним относятся языки STL и X3D, а также стандарт VRML. Существует множество вспомогательных программ, позволяющих производить самые разнообразные действия по подготовке к печати и созданию материальной модели. Такими являются, например, программы слайсеры, позволяющие разрезать объект на части для вывода его на печать частями (Kissslicer или Cura) или программа 123D Catch, предназначенная для работы с облачным сервисом, и позволяющая получить трёхмерную цифровую модель объекта по его фотографиям, сделанным с разных ракурсов. Наличие вспомогательных программ, поставляемых изготовителем принтеров, значительно облегчает работу с такими технически сложными устройствами. И на этот факт тоже следует обращать внимание при их выборе.

Наиболее подходящие 3D-принтеры для малого бизнеса

Объёмная печать с использованием 3D-принтеров, является сегодня наиболее перспективным направлением для малого бизнеса. С помощью этих компьютерных устройств, не требующих слишком больших финансовых вложений, как для промышленных принтеров, можно наладить мелкосерийное производство различных товаров.

Из большого многообразия, представленных на рынке принтеров для этих целей больше всего, подойдут модели, удовлетворяющие следующим критериям:

  • качество печати должно быть довольно высоким, чтобы создавать уникальные и реалистичные модели, интересные для продажи, что сразу исключает из выбора относительно дешёвые принтеры, стоимостью до 1000 долларов;
  • желательно, чтобы принтер был приспособлен для цветной печати (принтеры FDM, DIW, 3DP или EBF), что позволит сэкономить время на раскрашивание товара при мелкосерийном производстве;
  • устройство должно поддерживать работу хотя бы с двумя основными видами пластиков (ПЛА И АБС), что расширит возможности его использования, и позволит производить продукцию для детей (ПЛА пластик предназначен именно для детских товаров);
  • цена расходных материалов, используемых 3D-принтером, должна обеспечивать приемлемую себестоимость готовых изделий, достаточную для нормального уровня рентабельности бизнеса;
  • размер рабочей камеры должен соответствовать габаритам предусмотренных для производства моделей, при этом следует учитывать, что принтеры с большей областью печати и стоить будут дороже.

В любом случае выбор принтера будет зависеть от того, каким видом бизнеса вы предполагаете заниматься. Для производства мелких поделок подойдут устройства экструзионного типа, а для изготовления ювелирных изделий или зубных протезов - более дорогие принтеры на фотополимерах. Из наиболее подходящих для малого бизнеса можно назвать следующие модели:

  • Flashforge Creator Dual , с объёмом рабочей камеры 5,2 литра и двумя экструдерами, принтер поддерживает работу с тремя видами пластиков - ABS, PLA, PVA и имеет точность печати 0,1 мм;
  • 3Dison pro AER от корейской компании Rokit, с объёмом рабочего пространства 15,3 литра способный работать с 50 материалами, имеющий высокую скорость печати (до 1000 мм/сек) и толщину слоя от 0,025 мм;
  • стереолитографический 3D-принтер типа SLA модели

    Pico 2 от компании Asiga, идеальный выбор для тех, кто решил заняться ювелирным делом или оказанием стоматологической помощи, устройство работает от твердотельного LED источника ультрафиолетового излучения.

Какое устройство выбрать для дома

Учитывая пока ещё высокую стоимость периферийных компьютерных устройств для трёхмерной печати, вряд ли будет целесообразным покупать для домашнего пользования слишком дорогой и навороченный 3D-принтер стоимостью в 5 - 10 тыс. долларов и выше. Вполне достаточно будет устройства по цене от 500 долларов до 3 тысяч. Здесь всё зависит от требовательности покупателя к качеству печати и его финансовых возможностей.

Лучше всего, если 3D-принтер для дома будет иметь простое и понятное управление, удобный интерфейс и идеальное соотношение цены и качества. Все востребованные сегодня для домашнего пользования принтеры можно разделить на следующие группы по ценовым категориям:

  • бюджетные модели, наиболее доступные из этого вида устройств по цене от 300 до 1 тысячи долларов;
  • принтеры среднего класса (1–1,5 тыс. долларов);
  • довольно высокого класса устройства по демократичной цене от 1,5 до 3 тысяч долларов.

Среди наиболее популярных принтеров для 3D-печати, можно отметить следующие модели:

  • Printrbot Simple , стоимостью 300$, который относится к принтерам экструзионным (FMD), и продаётся в разобранном виде - самостоятельная сборка устройства поможет лучше разобраться с его конструкцией и понять принцип работы этого оборудования;
  • Kino XYZ printing da Vinci 1.0 - это новый принтер тайваньской компании XYZ printing, имеющий высокое разрешение печати сопоставимое с более дорогими устройствами - 0,1 мм, стоимость его около 500$ (в работе используется технология послойного наложения расплавленного пластика - FDM);
  • Cubify CubeX , относящийся к среднему ценовому сегменту, со стоимостью 1300$, и отличающийся высоким качеством печатания и скоростью создания модели с большими её размерами, этот принтер выпускается в трёх вариантах конструкции - с 1, 2 и 3 экструдерами, что позволяет получать цветные макеты компьютерных моделей, может подключаться к компьютеру через USB соединение или Wi-Fi модуль.
  • Afinia H-Series H479 , имеющий высокую точность печати (0,15 - 0,4 мм), удобное программное обеспечение, который работает с недорогой нитью из ABS пластика приличного качества, стоит такое устройство 1,5 тысячи долларов.

Рейтинг лучших 3D-принтеров

Самым известным в мире экспертом в области объёмной печати является зарубежный портал 3D Hubs, который регулярно составляет рейтинг лучших моделей печатающих периферийных устройств в различных номинациях. По версии этого интернет-ресурса, лучшими в 2017 году были названы следующие модели 3D-принтеров:

  1. Original Prusa i3 MK2 производства чешской компании Prusa Research. Этот принтер предназначен для любителей электроники, являющихся новичками в вопросах 3D-печати, которые смогут самостоятельно собрать его из комплектующих, поскольку он продаётся в разобранном виде. Устройство относится к экструзионным моделям типа FDM, и поддерживает работу с 15 видами пластика, включая ABS и PLA, Carbon и Nylon, HIPS и FilaFlex, Bamboofill, Laybrick и другие. Эта модель в работе может использовать одновременно до 4 различных материалов. Она имеет интегрированную ось Z и нагревательный стол с печатной поверхностью из пластика типа PEI. Принтер такой модели имеет достаточно большую область печати размерами 250 x 210 x 200 мм, минимальную толщину укладываемого слоя пластика 0,05 мм и скорость печатания 40 - 60 мм в секунду.
  2. BCN3D Sigma R17 (Release 2017) . Эта модель 3D-принтера, выпущенная компанией из Испании BCN3D Technologies, является продолжением популярной во всём мире линейки устройств для трёхмерной печати Sigma. В новой модели применён независимый двойной экструдер, позволяющий избежать деформаций при смене цвета изделий, а также одновременно выполнять печать двух идентичных макетов. В модернизированном устройстве применена новая система охлаждения и обновлена технология микрочипов, управляющих мощностью. Всё это позволило сделать работу принтера более бесшумной. Sigma R17 имеет высокую точность печати от 0,125 мм и область построения макета размерами 297 х 210 х 210 мм. В работе применяется пластиковая нить из следующих полимеров ABS, PLA, HIPS, PET и Exotics, которые экструдер выдавливает с минимальной толщиной слоя 0,05 мм.
  3. Formlabs Form 2 - стереолитографический (SLA) 3D-принтер, выпускаемый американской компанией Formlabs, оснащённый мощным лазером, сенсорным дисплеем и Wi-Fi модулем. Устройство имеет область печати размером 145 x 145 x 175 мм и толщину слоя 0,025 - 0,1 мм. Этот принтер работает на жидких фотополимерах и допускает использование смол других производителей. Он оснащён платформой с подогревом и встроенной панелью управления.
  4. PowerSpec 3D Pro. Данная модель производится в Китае и относится к ценовой категории бюджетных 3D-принтеров. Его отличительными чертами являются прочность, высокая скорость печати и наличие в конструкции двойного экструдера, что является редкостью для недорогих моделей. 3D Pro поддерживает работу с тремя видами пластиков (PLA, ABS и PVA) и имеет высокую точность печати. Толщина укладываемого слоя 0,1 - 0,3 мм.
  5. OrdBot Hadron. Этот принтер выпускает компания ORD Solutions из Канады. Модель представляет собой механическую платформу для 3D-печати, изготовленную из алюминия. Она имеет высокую жёсткость, надёжность и скорость печати (400 мм/с). Принцип её работы построен на технологии FDM. Устройство поддерживает работу с двумя видами пластиков - ABS и PLA, и имеет область печати размером 190 х 190 х 150 мм. В конструкции этого принтера предусмотрена возможность подключения второго экструдера, сервопривода, жидкокристаллического экрана и другого оборудования, что сможет существенно модернизировать устройство уже после его покупки.

Технологии трёхмерной 3D печати ещё только начинают завоёвывать компьютерный рынок, и стоимость принтеров для воплощения цифровой модели в материальный объект пока довольно высокая. Но за этими технологиями будущее, и наверняка 3D-принтеры в скором времени появятся в каждом доме, превратившись в обыденное дополнение к компьютеру. Уже сегодня многие модели стали доступными для людей со средним уровнем достатка, и широко используются не только в малом бизнесе, но и в быту. Пользуясь изложенными рекомендациями можно легко подобрать подходящий принтер для домашнего пользования или небольшого собственного бизнеса.

3D печать основана на технологии послойного выращивания твёрдых объектов из различных материалов. Объёмные модели печатаются из пластика, бетона, гидрогеля, металла и даже из живых клеток и шоколада. В настоящей статье мы представим краткий обзор наиболее популярных материалов для 3D печати .

ABC-пластик

АBC-пластик известен как акрилонитрилбутадиенстирол. Это один из лучших расходных материалов для 3D печати. Такой пластик не имеет запаха, не токсичен, ударопрочен и эластичен. Температура плавления АВС-пластика составляет от 240°С до 248°С. Он поступает в розничную продажу в виде порошка или тонких пластиковых нитей, намотанных на бобины.

3D модели из АВС-пластика долговечны, но не переносят прямой солнечный свет. С помощью такого пластика можно получить только непрозрачные модели.

АВС-пластик для 3D печати

Акрил

Акрил используется в 3D печати для создания прозрачных моделей. При использовании акрила необходимо учитывать следующие особенности: для данного материала нужна более высокая температура плавления, чем для АВС-пластика, и он очень быстро остывает и твердеет. В разогретом акриле появляется множество мелких воздушных пузырьков, которые могут вызвать визуальные искажения готового изделия.

Изделия, напечатанные из акрила

Бетон

В настоящее время изготовлены пробные образцы 3D принтеров для печати бетоном . Это огромные печатающие устройства, которые кропотливо, слой за слоем, «печатают» из бетона строительные детали и конструкции. Такой 3D принтер может всего лишь за 20 часов «напечатать» жилой двухэтажный дом общей площадью 230 м2.

Для 3D печати используется усовершенствованный сорт бетона, формула которого на 95% совпадает с формулой обычного бетона.

Изделия, напечатанные бетоном

Гидрогель

Учёные из иллинойского Университета (США) напечатали при помощи 3D принтера и гидрогеля биороботов длиной 5-10 мм. На поверхность биороботов поместили клетки сердечной ткани, которые распространились по гидрогелю и начали сокращаться, приводя в движение робота. Такие роботы из гидрогеля способны передвигаться со скоростью 236 микрометров в секунду. В будущем они будут запускаться в организм человека для обнаружения и нейтрализации опухолей и токсинов, а также для транспортировки лекарственных препаратов к месту назначения.

Биороботы из гидрогеля, напечатанные 3D принтером

Бумага

В некоторых 3D принтерах в качестве материала для печати используется обычная бумага формата А4. Так как бумага - это доступный и недорогой материал, то и бумажные модели получаются недорогими и доступными для пользователей. Такие модели печатаются послойно, причём каждый последующий слой бумаги вырезается принтером и наклеивается на предыдущий. Модели из бумаги печатаются быстро, но не могут похвастаться прочностью или эстетичностью. Они идеально подойдут для быстрого прототипирования компьютерного проекта.

3D модели, напечатанные из бумаги

Гипс

В современной 3D печати широко применяются гипсовые материалы. Модели, изготовленные из гипса, недолговечны, но имеют очень низкую себестоимость. Такие модели идеально подходят для изготовления объектов, предназначенных для презентаций. Их можно показывать в качестве образца заказчикам и клиентам, они отлично передадут форму, структуру и размер оригинального изделия. Так как гипсовые модели отличаются высокой термостойкостью, их используют в качестве образцов для литья.

3D модель, напечатанная из гипса

Деревянное волокно

Изобретатель Кай Парти разработал специальное деревянное волокно для 3D печати. Волокно состоит из дерева и полимера и по своим свойствам похоже на полиактид (PLA). Комбинированный материал позволяет получить долговечные и твёрдые модели, которые внешне выглядят как деревянные изделия и имеют запах свежеспиленного дерева. В настоящее время инновационный материал используется только в самореплицирующихся принтерах RepRap.

3D модель, напечатанная деревянным волокном

Лёд

В 2006 году два канадских профессора получили грант на развитие технологии 3D печати ледяных фигур. За три года они научились создавать при помощи 3D принтеров небольшие ледяные предметы. Печать протекает при температуре -22°С, в качестве расходных материалов используются вода и метиловый эфир, подогретый до температуры 20°С.

Фигура, напечатанная льдом

Металлический порошок

Ни один пластик не сможет заменить металл с его приятным мягким блеском и высокой прочностью. Поэтому в 3D печати очень часто используется порошок из лёгких и драгоценных металлов: меди, алюминия, их сплавов, а также золота и серебра. Однако металлические модели не обладают достаточной химической стойкостью и имеют высокую теплопроводность, поэтому в металлический порошок для печати добавляют стекловолоконные и керамические вкрапления.

Украшения из металлического порошка, напечатанные 3D принтером

Нейлон

Печать нейлоном имеет много общего с печатью АВС-пластиком. Исключениями являются более высокая температура печати (около 320°С), высокая способность впитывать воду, более продолжительный период застывания, необходимость откачки воздуха из экструдера из-за токсичности компонентов нейлона. Нейлон - это достаточно скользкий материал, для его применения следует оснастить экструдер шипами. Несмотря на перечисленные недостатки, нейлон с успехом используют в 3D печати, так как детали из данного материала получаются не такими жёсткими, как из АВС-пластика, и для них можно использовать шарниры скольжения.

Нейлоновая нить для 3D печати

Изделия из нейлона, напечатанные 3D принтером

Поликапролактон (PCL)

Поликапролактон близок по свойствам к биоразлагаемым полиэфирам. Это один из самых популярных расходных материалов для 3D печати. Он имеет низкую температуру плавления, быстро затвердевает, обеспечивает прекрасные механические свойства готовых изделий, легко разлагается в человеческом организме и безвреден для человека. Кроме того, он может применяться сразу в нескольких технологиях 3D печати: SLS, ZCorp и FDM.

Поликапролактон для 3D принтера

Поликарбонат (PC)

Поликарбонат - это твёрдый пластик, который способен сохранять свои физические свойства в условиях экстремально высоких и экстремально низких температур. Обладает высокой светонепроницаемостью, имеет высокую температуру плавления, удобен для экструзионной обработки. При этом его синтез сопряжён с рядом трудностей и экологически не безвреден. Используется для печати сверхпрочных моделей в нескольких технологиях 3D печати: SLS, LOM и FDM.

Полилактид (PLA)

Полилактид - это самый биологически совместимый и экологически чистый материал для 3D принтеров. Он изготавливается из остатков биомассы, силоса сахарной свёклы или кукурузы. Имея массу положительных свойств, полилактид имеет два существенных недостатка. Во-первых, изготовленные из него модели недолговечны и постепенно разлагаются под действием тепла и света. Во-вторых, стоимость производства полилактида очень высока, а значит и стоимость моделей будет значительно выше аналогичных моделей, изготовленных из других материалов. Используется в технологиях 3D печати: SLS и FDM.


Полилактидная нить и изделия, напечатанные полилактидом на 3D принтере

Полипропилен (PP)

Полипропилен - это самая лёгкая из всех ныне существующих пластических масс. По сравнению с полиэтиленом низкого давления хуже плавится и лучше противостоит истиранию. При этом уязвим к активному кислороду и деформируется при отрицательных температурах.

Полипропилен для 3D печати

Полифенилсульфон (PPSU)

Данный материал пришёл в 3D печать из авиапромышленности. Он практически не горит, характеризуется теплостойкостью, высокой твёрдостью. Напоминает обычное стекло, но превосходит его по прочности. Используется в технологиях 3D печати: SLS и FDM.

Полиэтилен низкого давления (HDPE)

Это самый распространённый вид пластмассы в мире, из которого изготавливают ПЭТ-бутылки, канистры, трубы, плёнки, пакеты и т.д. В 3D печати полиэтилен низкого давления является непревзойдённым лидером. Данный материал может быть использован в любой технологии 3D печати.


Полиэтиленовая обувь, напечатанная на 3D принтере

Шоколад

Британские учёные представили публике первый шоколадный 3D принтер, который печатает любые шоколадные фигурки, заказанные оператором. Принтер наносит каждый следующий слой шоколада поверх предыдущего. Благодаря способности шоколада быстро застывать и твердеть при охлаждении, процесс печати протекает довольно быстро. В ближайшем будущем такие принтеры будут востребованы в кондитерских и ресторанах.

Шоколадный принтер в работе

Прочие материалы

Существуют 3D принтеры, которые предназначены для печати глиняными смесями, известковым порошком, продуктами питания, живыми органическими клетками и многими другими удивительными материалами. О том, какие материалы для 3D печати будут использоваться в ближайшем будущем, остаётся лишь догадываться.

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый , способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё - от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце - это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей - высокая скорость, простота и относительно небольшая стоимость.

Например, для создания или какой-либо детали вручную может понадобиться довольно много времени - от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы - чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге - ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера могут использоваться самые разные материалы. Их физико-механические характеристики могут сильно различаться между собой. Однако ни одному производителю пока не удаётся создать действительно прочный материал. Характеристики смол по прочности сравнимы с эпоксидной смолой.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS - единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология LCD

Ещё недавно, около 2017 года, 3d-принтеры для печати фотополимером были дорогими. Однако изобретение печати на основе проницаемых матриц LCD изменило ситуацию в корне. На середину 2019 года можно приобрести фотополимерный 3d-принтер хорошего качества примерно за 30 000 рублей.

LCD матрица для 3d принтера представляет из себя экран по аналогии с экраном сотового телефона. Сама по себе такая матрица не излучает свет. Она может только изменять степень светопропускания в различных областях. Так формируется картинка слоя печати. А вот источник излучения находится за lcd матрицей. Таким образом для создания подобного 3д-принтера нужно было всего лишь заменить лампу-излучатель на источник ультрафиолетового излучения. Напомним, что подавляющее большинство фотополимеров застывают под действием именно УФ излучения.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области . В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала - из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой - скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь - уже не плод воображения писателей - фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

Появление на рынке 3D-принтеров ознаменовало новую эпоху. Если раньше продукция, разработанная на базе высоких технологий, в бытовом хозяйстве позволяла решать привычные задачи, то в случае с трехмерной печатью предлагается новый способ применения устройств. Разумеется, новым он является только для рядового пользователя, так как в промышленности и на производственных предприятиях схожие технологии используются давно. Но в любом случае печать на 3D-принтере значительно расширяет возможности потребителя, к освоению которых, как показывает практика, готовы далеко не все. Во многом это связано со сложностью технологической реализации аппаратов, а также с нюансами их эксплуатации.

Но самые интересные вопросы касаются пользы от таких принтеров. Какие изделия позволяет создавать данное устройство? Для каких целей его продукцию можно использовать? И как работает 3D-принтер? Это важные вопросы, так как трехмерная печать все же является недешевым удовольствием. Поэтому приобретать соответствующее оборудование ради любопытства, мягко говоря, нецелесообразно. По крайней мере, стоит детальнее вникнуть в рабочие процессы печати и выяснить, какую пользу от них можно ожидать.

Что такое 3D-принтер?

Это устройство для трехмерной печати, посредством которого можно генерировать объемные предметы, дублирующие заранее подготовленную виртуальную модель объекта. По сравнению с традиционными принтерами, которые выводят электронный текст на бумагу, 3D-устройства обеспечивают вывод трехмерной информации, то есть создают объекты с реальными физическими параметрами. Собственно, для понимания того, как работает 3D-принтер, следует рассмотреть этапы изготовления твердых предметов с его помощью.

Принцип работы в общих чертах

Начинается работа с создания виртуального шаблона на компьютере с помощью специальной программы. Далее происходит обработка программным способом модели с целью ее разделения на слои. После этого в работу вступает техническая часть принтера, послойно формируя массу из композитного порошка для дальнейшего изготовления предмета. По мере заполнения специальной камеры материалом ось принтера распределяет массу по рабочей поверхности. После формирования каждого слоя головка устройства накладывает клеевую основу. Повторяется этот процесс до момента, пока не будет выполнен объект, разработанный в программе для печати. Важно учитывать, что изготовление на 3D-принтере может выполняться по разным технологиям. Соответственно, меняется и и свойства используемого материала, а также подходы к программной реализации задачи.

Технология быстрого прототипирования

Несмотря на различия в нюансах процесса изготовления, практически все устройства для трехмерной печати работают на принципе быстрого прототипирования. В соответствии с данной концепцией, производство осуществляется путем быстрого формирования опытных моделей для предварительной демонстрации возможностей будущего продукта. Задумывалась технология еще в 1980-х годах с целью создания образцов и заготовок. Сегодня этот метод известен как понимание которого и даст ответ на вопрос о том, как работает 3D-принтер и что отличает его функцию от традиционных подходов к изготовлению предметов. Так, если в процессе фрезерования, точения и происходит удаление материала, а ковка, прессовка и штамповка изменяют форму заготовки, то аддитивное производство предполагает увеличение массы материала посредством наращивания слоями. Иными словами, 3D принтер изменяет фазовое состояние веществ в определенных границах пространства. На сегодняшний день трехмерная печать развивается в нескольких направлениях, среди которых можно выделить стереолитографические технологии (STL), методы нанесения термопластов (FDM) и лазерное спекание (SLS).

Метод послойного наплавления термопласта

Это, пожалуй, наиболее популярная техника трехмерного изготовления. Распространенности FDM-аппаратов способствует сразу несколько факторов. В первую очередь в работе устройств используются относительно недорогие пластики. Также имеет значение простая техника эксплуатации, что особенно важно в работе с таким оборудованием. Как правило, технологии 3D-принтеров этого типа предусматривают работу с термопластиками, одним из которых является полилактид. Среди преимуществ этого материала отмечается экологичность, так как получают данный пластик из сахарного тростника и кукурузы.

Главным же элементом в самом принтере стоит назвать экструдер, который выполняет задачу печатной головки. Впрочем, в этой части не все так однозначно, поскольку элемент представляет собой комплекс отдельных компонентов. Если рассматривать термин «экструдер» в привычном понимании, то к нему будет относиться только часть головки в виде подающего механизма. Так или иначе, печатающая основа подает пластик для 3D-принтера путем нанесения расплавленной нити. Движение механической части обеспечивается электромотором. В итоге механизм направляет нить в нагреваемую трубу сопла, которая и формирует конечный объект.

Стереолитографические установки

Технология лазерной стереолитографии сегодня широко применяется в протезировании зубов. Это второй по популярности тип принтеров для 3D-печати. Отличительной чертой стереолитографических устройств является получение непревзойденно высокого качества объектов. Достигаются такие результаты благодаря разрешению аппаратов, которое может исчисляться единичными микронами. Поэтому вполне логично, что работа 3D-принтера на основе лазерной стереолитографии высоко ценится не только стоматологами, но и ювелирами. Программная часть устройства во многом напоминает FDM-аналоги, но есть и целый ряд особенностей технологии. Несмотря на тот факт, что принцип печати называют лазерной стереолитографией, все чаще функция такого оборудования базируется на светодиодных ультрафиолетовых проекторах.

Проекторные модели надежнее лазерных и по цене обходятся дешевле. Для них не нужны деликатные зеркала, обеспечивающие отклонение лучей, что упрощает конструкцию. В то же время печать на 3D-принтере с проекторами отличается высокой производительностью. Данное преимущество достигается благодаря тому, что происходит не последовательное, а полное засвечивание контура слоя.

Лазерное спекание

Еще одна разновидность применения лазерного метода. В этом случае применяется легкоплавный пластик. Мощный лазер прорисовывает по пластиковой основе сечение объекта, что приводит к плавлению и спеканию материала. Так происходит с каждым слоем до получения завершенной модели, которую подготовила программа для 3D-принтера в качестве заготовки. Остатки пластикового порошка стряхиваются с полученного предмета в конце рабочего процесса. Существенным недостатком таких аппаратов является создание объектов с пористой поверхностью. С другой стороны, это никак не влияет на прочность изделий. Более того, именно вышедшие из таких принтеров модели являются самыми долговечными. Сама же установка имеет сложную конструкцию и, как следствие, высокую стоимость. При этом и процесс изготовления отнимает много времени по сравнению с 3D-принтерами других типов. Как отмечают пользователи, скорость формирования модели составляет несколько сантиметров в час.

Расходные материалы

Основным материалом для создания моделей путем трехмерной печати является термопластик. Кроме уже упомянутых разновидностей, стоит отметить пластик для 3D-принтера в форматах ABS и PLA. Также используется нейлон, поликарбонат, полиэтилен и другие виды, также используемые в промышленности. При этом некоторые установки допускают и смешивание материалов, а также использование вспомогательных веществ, улучшающих качественные характеристики будущего изделия. Например, для этой цели используют который, в сущности, является той же разновидностью пластика PVA. Растворив его в воде, пользователь может создавать сложные геометрические фигуры.

Наиболее же экзотическим материалом для использования в подобных задачах является металл. Чтобы получить такое изделие, также применяют 3D-модели для печати на 3D-принтере, а отличия технологии сводятся к функции С ее помощью наносится связующая клейкая масса в места, куда указывает компьютерная программа. Далее на всю рабочую область головка наносит тонкий пласт металлической пудры. То есть металл не плавится, как в случае с пластиками, а накладывается и склеивается послойно в виде мельчайших частичек.

Управление работой принтера

Для начала стоит отметить операции, которые контролируются пользователем через компьютер. Это регулировка температуры сопла и рабочей площадки, темпы подачи материала и работы электромотора, который обеспечивает позиционирование печатающей головки. Все эти действия находятся под управлением электронных контроллеров. Как правило, современные модели таких устройств базируются на системе Arduino с открытой архитектурой. Что касается программного языка, то в принтерах используется так называемый G-код, построенный на командах управления оборудованием для печати. На этой стадии можно перейти к рассмотрению программ-слайсеров, которые обеспечивают перевод 3D-модели для печати на 3D-принтере в понятный контроллерам код. Сразу надо сказать, что такое программное обеспечение не имеет прямого отношения к разработке графических моделей.

Программное обеспечение

В перечень основных задач слайсеров входит установка параметров, в соответствии с которыми будет осуществляться печать. Выбор конкретной программы определяется типом принтера. Например, устройства RepRap подразумевают использование слайсеров, выполненных с открытым кодом. Среди таких можно выделить Replicator G и Skeinforge. Однако немало и производителей, которые рекомендуют использовать только фирменное ПО от конкретных компаний. Это, в частности, относится к аппаратам Cube от фирмы 3D Systems. Что же касается моделирования изделий, то этим занимается специальная программа для 3D-принтера, предназначенная для трехмерного проектирования. Обычно для этих целей используют CAD-редакторы, которые, впрочем, требуют определенного опыта работы с дизайном 3D.

Какие изделия можно получить?

Спектр возможностей трехмерных принтеров активно расширяется, что позволяет создавать продукцию для самых разных сегментов рынка. Если говорить о строительстве и архитектуре, то здесь очень ценятся возможности изготовление макетов, для которых, собственно, и разрабатывалась концепция аддитивного производства. В машиностроительной промышленности также широко используется 3D-принтер. Изделия в данном случае могут быть представлены и потребительской продукцией, и отдельными элементами для концептов. Как уже говорилось, высокая точность изготовления деталей была высоко оценена работниками медицины. Помимо протезирования, 3D-принтер используется в изготовлении макетов и образцов органов.

3D-принтер – это уникальное устройство трёхмерной печати, с помощью которого можно сгенерировать объёмный предмет, дублирующий ранее подготовленную виртуальную модель. Принтер выводит трёхмерную информацию, т.е. создаёт практически любые объекты с реальными параметрами. Давайте рассмотрим подробнее, как 3д-принтер печатает новые вещи.

Как работает устройство

В первую очередь создаётся виртуальный шаблон на компьютере в специальной программе. Модель обрабатывается программным способом для разделения на слои. Затем принтер послойно формирует массу из специального порошка. Как только камера заполнится приготовленной массой, принтер распределит её по рабочей поверхности. При формировании слоев головка принтера накладывает клейкую основу. Процесс повторяется до того момента, пока объект не будет готов.

Важно! Изготовление новых вещей за 3д-принтере можно выполнить разными технологиями, которые отличаются техникой печати, свойствами материала и подходом к выполнению работы. Рассмотрим технологии подробнее.

Быстрое прототипирование

Большинство устройств работают именно по этой технологии. Производство происходит путём скорого формирования опытной модели для первичной демонстрации характеристик будущего продукта. Данный метод известен в народе как аддитивное производство.

Если в процессе точения, фрезерования либо при электроэрозионной обработке удаляется материал, а штамповка, ковка и прессовка влияют на форму заготовки, то в этих случаях аддитивное производство увеличивает массу материала, наращивая слои.

Проще говоря, принтер меняет фазовое состояние вещества в определённой границе пространства. Сегодня печать идёт в нескольких направлениях:

  • STL – стереолитографическая технология.
  • FDM – нанесение термопласта.
  • SLS – спекание лазером.

Послойное наплавление термопласта

Это самая востребованная техника 3D-изготовления. Её преимущество – использование недорогого и экологичного пластика. Техника эксплуатации довольно простая, что особенно ценится при работе с устройством. Главный элемент в принтере – экструдер, выполняющий работу печатной головки.

Печатающая основа направляет пластик для устройства путём нанесения расплавленной нитки. Механическая часть движется благодаря электромотору. В результате механизм в нагретую трубу сопла направляет нить, которая будет формировать новую вещь.

Стереолитографическая установка

Данная технология успешно используется в протезировании зубов и изготовлении ювелирных изделий. Отличительная черта метода – нереально высокое качество. Несмотря на название, функция оборудования базируется на светодиодном ультрафиолетовом проекторе. Такие модели радуют надежностью и обходятся недорого. К тому же печать на устройстве с 3д-принтером очень производительна.

Спекание лазером

В данном случае используют легкоплавный пластик. Лазер прорисовывает сечение объекта по пластиковой основе, от чего материал плавится и стекается. Это происходит при каждом слое до завершения модели. Оставшийся пластиковый порошок стряхивают с новой вещи в конце работы.

Вещи, изготовленные данным методом, считаются самыми долговечными, но конструкцию принтера нельзя назвать простой, а стоимость низкой.

Об управлении принтером

В первую очередь стоит сказать об операциях, контролируемых через компьютер: настройка температуры сопла, а также рабочей площадки; темп работы электромотора и подачи массы. Всё это находится под управлением электронных контроллеров. Обычно, модели базируются на популярной системе с открытой архитектурой – Arduino. Касательно программного языка, то в устройствах используют G-код, который построен на разных командах настройки оборудования для 3д-печати.

С помощью 3д-принтера, компьютера и расходных материалов можно создать удивительные вещи от крохотных безделушек вплоть до корпуса велосипеда и автозапчастей.