Какие информационные каналы связи существуют. Линии связи и каналы передачи данных. Модель канала с межсимвольной интерференцией и аддитивным шумом

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Канал связи - это совокупность средств, предназначенных для передачи сигналов (сообщений).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи : проводные; кабельные; оптико-волоконные; линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов : непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности : каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала Tк, ширины спектра частот, пропускаемых каналом Fк и динамического диапазона Dк., который характеризует способность канала передавать различные уровни сигналов Vк = Tк Fк Dк. (1) Условие согласования сигнала с каналом: Vc Vk; Tc Tk; Fc Fk; Vc Vk; Dc Dk.

2. Скорость передачи информации - среднее количество информации, передаваемое в единицу времени.

3.Пропускная способность канала связи - наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность - обеспечивает достоверность передаваемой информации (R = 01).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех. Канал связи образно можно сравнивать с дорогами. Узкие дороги - малая пропускная способность, но дешево. Широкие дороги - хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом. Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные - витая пара. Скорость передачи до 1 Мбит/с.

2. Коаксиальный кабель . Скорость передачи 10-100 Мбит/с

3. Оптико-волоконная . Скорость передачи 1 Гбит/с.

Радиолинии :

Радиоканал . Скорость передачи 100-400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости.

Микроволновые линии . Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10-200 км. Используются для телефонной связи, телевидения и передачи данных.

Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором.

Теорема Шеннона для каналов без помех всегда можно создать систему эффективного кодирования дискретных сообщений, у которой среднее количество двоичных кодовых сигналов на один символ сообщения будет приближаться как угодно близко к энтропии источника сообщений.

Пусть источник сообщений имеет производительность H ¢(U) = u C ×H(U), а канал имеет пропускную способность C = u K ×log M. Тогда можно закодировать сообщения на выходе источника таким образом, чтобы получить среднее число кодовых символов приходящихся на элемент сообщения h = u K /u C = (H(U)/ log M)+e (2.2), где e - сколь угодно мало (прямая теорема). Получить меньшее значение h невозможно (обратная теорема). Обратная часть теоремы утверждающая, что невозможно получить значение h = u K / u C < H(U)/ log M (2.3), может быть доказана если учесть, что неравенство (2.3) эквивалентно неравенству u C × H(U) > u K × log M, H¢ (U) > C. Последнее неравенство не может быть выполнено т.к. рассматриваемое кодирование должно быть обратимым преобразованием (т.е. без потерь информации). Энтропия в секунду на входе канала или производительность кодера не может превышать пропускную способность канал. А энтропия принимаемых сигналов определяется из условия максимального значения H’(y)= log m.

Теорема Шеннона для дискретного канала с шумом называется так же основной теоремой кодирования Шеннона. Если производительность источника сообщений H¢ (U) меньше пропускной способности канала С т.е. H¢(U)< C, то существует такая система кодирования которая обеспечивает возможность передачи сообщений источника со сколь угодно малой вероятностью ошибки (или со сколь угодно малой ненадежностью).

Если H¢(U) > C, то можно закодировать сообщение таким образом, что ненадежность в единицу времени будет меньше чем H¢(U)-C+ e, где e ®0 (прямая теорема).

Не существует способа кодирования обеспечивающего ненадежность в единицу времени меньшую, чем H¢(U)-C (обратная теорема).

В такой формулировке эта теорема была дана самим Шенноном. В литературе часто вторая часть прямой теоремы и обратная теорема объединяются в виде обратной теоремы сформулированной так: если H¢(U) > C, то такого способа кодирования не существует.

2. Типы сигналов, их дискретизация и восстановление. Спектральная плотность сигналов. Частота Найквиста, теорема Котельникова. Частотное представление дискретных сигналов. Ортогональные преобразования дискретных сигналов. Задачи интерполяции и прореживания сигналов.

Типы сигналов, их дискретизация и восстановление

По видам (типам) сигналов выделяются следующие:

1. аналоговый

2. дискретный

3. цифровой

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов , как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (―аналогичен‖) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp /2.8]. При этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y J , t J . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -Ґ до +Ґ . Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y Ј , Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0, 1, 2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk, где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда (discrete series) числовых данных - числового массива по последовательным значениям аргумента при Dt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

Дискретизация, восстановление (интерполяция) сигналов.

Процесс дискретизации - это процесс получения значений величин преобразуемого сигнала в определенные промежутки времени (отсчеты ).

Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.

Принципы дискретизации . Сущность дискретизации аналоговых сигналов заключается в том, что непрерывность во времени аналоговой функции s(t) заменяется последовательностью коротких импульсов, амплитудные значения которых определяются с помощью весовых функций, либо непосредственно выборками (отсчетами) мгновенных значений сигнала s(t) в моменты времени .Представление сигнала s(t) на интервале Т совокупностью дискретных значений записывается в виде:

(с1, с2, ... , cN) = А,

где А - оператор дискретизации. Запись операции восстановления сигнала s(t):

s"(t) = В[(с1, с2, ... , cN)].

Выбор операторов А и В определяется требуемой точностью восстановления сигнала. Наиболее простыми являются линейные операторы. В общем случае:

(5.1.1)

Где - система весовых функций.

Отсчеты в выражении (5.1.1) связаны с операцией интегрирования, что обеспечивает высокую помехоустойчивость дискретизации. Однако в силу сложности технической реализации "взвешенного" интегрирования, последнее используется достаточно редко, при высоких уровнях помех. Более широкое распространение получили методы, при которых сигнал s(t) заменяется совокупностью его мгновенных значений s() в моменты времени . Роль весовых функций в этом случае выполняют гребневые (решетчатые) функции. Отрезок времени Dt между соседними отсчетами называют шагом дискретизации. Дискретизация называется равномерной с частотой F=1/Dt, если значение Dt постоянно по всему диапазону преобразования сигнала. При неравномерной дискретизации значение Dt между выборками может изменяться по определенной программе или в зависимости от изменения каких-либо параметров сигнала.

Восстановление сигналов

Восстановление непрерывного сигнала по выборкам может проводиться как на основе ортогональных, так и неортогональных базисных функций. Воспроизводящая функция s"(t) соответственно представляется аппроксимирующим полиномом:

Где система базисных функций. Ортогональные базисные функции обеспечивают сходимость ряда к s(t) при n Ю Ґ . Оптимальными являются методы дискретизации, обеспечивающие минимальный числовой ряд при заданной погрешности воспроизведения сигнала. При неортогональных базисных функциях используются, в основном, степенные алгебраические полиномы вида:

Если значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим. В качестве интерполирующих полиномов обычно используются многочлены Лагранжа. Для реализации интерполирующих полиномов необходима задержка сигнала на интервал дискретизации, что в системах реального времени требует определенных технических решений. В качестве экстраполирующих полиномов используют, как правило, многочлены Тейлора.

Естественным требованием к выбору частоты дискретизации является внесение минимальных искажений в динамику изменения сигнальных функций. Логично полагать, что искажения информации будут тем меньше, чем выше частота дискретизации F. С другой стороны также очевидно, что чем больше значение F, тем большим количеством цифровых данных будут отображаться сигналы, и тем большее время будет затрачиваться на их обработку. В оптимальном варианте значение частоты дискретизации сигнала F должно быть необходимым и достаточным для обработки информационного сигнала с заданной точностью, т.е. обеспечивающим допустимую погрешность восстановления аналоговой формы сигнала (среднеквадратическую в целом по интервалу сигнала, либо по максимальным отклонениям от истинной формы в характерных информационных точках сигналов).

Квантование сигнала .

Дискретизация аналоговых сигналов с преобразованием в цифровую форму связана с квантованием сигналов. Сущность квантования состоит в замене несчетного множества возможных значений функции, в общем случае случайных, конечным множеством цифровых отсчетов, и выполняется округлением мгновенных значений входной функции s(ti) в моменты времени ti до ближайших значений si(ti) = niDs, где Ds- шаг квантования шкалы цифровых отсчетов. Квантование с постоянным шагом Ds называется равномерным. Математически операция квантования может быть выражена формулой:

где скобки [..] означают целую часть значения в скобках.

При квантовании сигналов в большом динамическом диапазоне значений шаг квантования может быть и неравномерным, например, логарифмическим, т.е. пропорциональным логарифму значений входного сигнала. Установленный диапазон шкалы квантования от smin до smax и шаг квантования Ds определяют число делений шкалы Ns = (smax-smin)/Ds и соответственно цифровую разрядность квантования. В результате дискретизации и квантования непрерывная функция s(t) заменяется числовой последовательностью {s(kDt)}. Погрешность округления ei = s(kDt)-si(kDt) заключена в пределах -Ds/2

При достаточно малом шаге квантования любое значение в его пределах можно считать равновероятным, при этом значения e распределены по равномерному закону:

p(e) = 1/Ds, -Ds/2 Ј e Ј Ds/2.

Соответственно, дисперсия и среднее квадратическое значение шума квантования:

e2 = Ds2/12, » 0.3 Ds. .1)

При задании уровня шума квантования с использованием выражения (5.5.1) нетрудно определить допустимое значение шага квантования.

Входной сигнал содержит, как правило, аддитивную смесь собственно сигнала s(t) и помехи q(t) с дисперсией соответственно sq2. Если помехи не коррелированны с сигналом, то после квантования суммарная дисперсия шумов:

На практике шаг квантования выбирают обычно таким, чтобы не происходило заметного изменения отношения сигнал/шум, т.е. e2<

КАНАЛЫ СВЯЗИ


1. Классификация и характеристики канала связи

Канал связи – это совокупность средств, предназначенных для передачи сигналов (сообщений).

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к. , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X), (2)

где: I (Y, X) – взаимная информация, т.е. количество информации, содержащееся в Y относительно X; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .


Канал связи - это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле, представляет только физическую среду распространения сигналов, например, физическую линию связи.

От источника сообщения (говорящего человека) сообщение (речь) поступает на вход передающего устройства (микрофон). Передающее устройство преобразует сообщение в сигналы, которые поступают на вход канала связи. На выходе канала связи приемное устройство (телефонный капсюль) по принятому сигналу воспроизводит переданное сообщение, последнее воспринимается приемником сообщения (слушающим человеком). Передатчик, канал связи, и приёмник формируют систему передачи информации или систему связи.

По назначению системы связи разграничивают каналы телесигнализации, телеизмерения, телеуправления (телекомандные), телеграфные, телефонные, звукового вещания, факсимильные, телевизионного вещания и т.д.

Каналы связи могут иметь много форм, включая каналы отвечающие требованиям хранения данных, которые могут передавать сообщения, как только возникнет ситуация.

Примеры каналов связи включают:

  • · Соединение между инициирующим и оконечным узлами цепи
  • · Буфер, на который сообщения могут быть положены и получены
  • · Выделенный канал, обеспечиваемый передающей средой либо физическим разделением, таким как многопарный кабель, либо электрическим разделением, таким как частотное уплотнение каналов связи или мультиплексирование с временным разделением каналов
  • · Путь для перемещения электрического или электромагнитного сигнала обычно отличается от других параллельных путей
  • · Часть записывающей среды, такой как дорожка или группа дорожек, что позволяет производить чтение или запись станции или устройства звуковоспроизведения
  • · В коммуникационных системах, часть, что соединяет источник данных и приемник данных
  • · Специфическая радиочастота, пара или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением
  • · Пространство в Internet Relay Chat (IRC) сети, в которой участники могут связываться один с другим

Все эти коммуникационные каналы разделяют то свойство, что они переносят информацию, которая переносится через канал сигналом.

Примером канала связи может служить специфическая радиочастота, пара частот или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением. Морское УКВ радио использует некие 88 каналов в УКВ диапазоне для двунаправленной частотно-модулированной голосовой связи. Канал 16, для примера, означает частоту 156,800 МГц.

Телевизионные каналы расположены на частоте, определяющей физической величиной которого являются мегагерцы (МГц). Каждый канал имеет ширину 6 Мгц. Кроме этих физических каналов телевидение также имеет виртуальные каналы. Wi-Fi (беспроводная сеть) представялет собой канал связи, состоящий из нелицензированных каналов 1-13 в диапазоне от 2412 МГц до 2484 МГц с шагом в 5 МГц.

Для передачи сигналов между взаимодействующими системами в компьютерных сетях используются линии связи.

В узком смысле под терминомлиния связи (transmission link, link ) подразумевается физическая среда, по которой передаются сигналы между двумя конечными системами. Сигналы формируются специальными техническими средствами (передатчиками, усилителями, мультиплексорами и т.д.), относящимися к сетевому оборудованию.

Среда передачи (transmission medium ) или физическая среда - материальная субстанция, через которую осуществляется распространение сигналов.

В компьютерных сетях используют два типа сред передачи: кабельную и беспроводную.

Рис. 3.1 Типы сред передачи

Основой беспроводных сред передачи является земная атмосфера или космическое пространство, через которые распространяются электромагнитные волны. В кабельных средах передачи используются кабели различных типов: коаксиальные, волоконно-оптические, витая пара. Передача сигналов в них осуществляется с помощью электрических (электрический ток) или оптических (свет) сигналов.

В широком смысле под термином « линия связи» в области компьютерных сетей подразумевают канал связи .

Канал связи (channel, data link ) представляет собой совокупность одной или нескольких физических сред передачи и каналообразующего (сетевого) оборудования, которые обеспечивают передачу данных между взаимодействующими системами в виде сигналов, соответствующих типу физической среды.

В этом контексте термины «линия связи» и «канал связи» являются синонимами.

Рис. 3.2 Канал связи

Различают физические (physical link ) и логические (logical link ) каналы. Физический канал связи представляет собой средство передачи сигналов между взаимодействующими системами. В зависимости от типа передаваемых сигналов и физической среды, используемой для их распространения, физические каналы подразделяются на электрические (витая пара, коаксиальный кабель), оптические (волоконно-оптический кабель) и беспроводные (радиоканалы, инфракрасные каналы и т.д).

Логические каналы устанавливаются между протоколами любых уровней модели OSI взаимодействующих систем и определяют путь, по которому данные передаются от источника к приемнику через один или последовательность физических каналов.

При прокладке в физическом канале нескольких логических каналов, ресурсы физического канала распределяются между логическими каналами с помощью методов мультиплексирования .

Рис. 3.3 Физический и логический каналы связи



Каналы (линии) связи можно классифицировать на основе следующих признаков:

● по типу физической среды;

● по типу представления передаваемой информации;

● по направлению передачи данных;

● по времени существования;

● по способу подключения;

● по ширине полосы пропускания.

В зависимости от типа представления передаваемой информации каналы делятся на аналоговые , предназначенные для передачи аналоговых сигналов и дискретные , служащие для передачи дискретных (цифровых) сигналов.

В зависимости от направления передачи данных различают каналы:

симплексные (simplex ), в которых передача осуществляется только в одном направлении;

полудуплексные (half-duplex поочередно в прямом и обратном направлении;

дуплексные (duplex ), в которых передача ведется одновременно в двух направлениях - прямом и обратном.

Рис. 3.4 Симплексный канал

Рис. 3.5 Полудуплексный канал

Рис. 3.6 Дуплексный канал

Также каналы можно классифицировать по времени доступности для абонента. Каналы между конечными системами, которые доступны для передачи данных на длительное время за счет постоянно существующего соединения с заданными характеристиками, называются выделенными или некоммутируемыми . Каналы связи, передача данных по которым возможна только после установления соединения между взаимодействующими системами, называются коммутируемыми или временными . При этом канал будет существовать только в течение сеанса связи, т.е. времени, требуемого для передачи данных.

По способу подключения каналы делятся на: «точка-точка» (point-to-point ), «точка-многоточка» (point-to-multipoint), «многоточка » (multipoint ). Канал «точка-точка» связывает только два узла или две взаимодействующих системы. Канал «точка-многоточка» обеспечивает соединение одной центральной системы (узла) с группой других систем (узлов). Канал «многоточка» обеспечивает подключение друг к другу группы узлов или систем.



Важной характеристикой канала связи является его полоса пропускания (bandwidth ). В зависимости от ширины полосы пропускания (разности между граничными частотами полосы пропускания) и способа передачи сигналов каналы делятся на основополосные (baseband channel ) и широкополосные (broadband channel ).

Основополосный канал характеризуется простотой и дешевизной реализации, в связи с чем, широко используется в локальных сетях (слово «BASE» в названиях спецификаций физического уровня Ethernet (например, 10BASE-T, 100BASE-FX, 1000BASE-SX), указывает на основополосную передачу). Сигнал по основополосному каналу передается в основной полосе частот, т.е. без модуляции несущей, при этом вся полоса пропускания используется для передачи только одного сигнала.

В отличие от основополосного канала, вся полоса пропускания широкополосного канала разделяется между несколькими логическими каналами с помощью методов мультиплексирования, что позволяет одновременно и независимо друг от друга выполнять передачу сигналов между несколькими парами взаимодействующих систем. Технологии широкополосного доступа (например, xDSL, PowerLine (PLC), 3G (UMTS), 4G (LTE)) используются при организации подключения к набору услуг, предлагаемых операторами связи.

Сигналы

Передача данных по каналам связи осуществляется с помощью их физического представления - электрических (электрический ток), оптических (свет) или электромагнитных сигналов.

Если рассматривать сигнал как функцию времени, то он может быть:

аналоговым (непрерывным ) - его величина непрерывно изменяется во времени;

цифровым (дискретным ) - имеющим конечное, обычно небольшое число значений.

Рис. 3.7 Аналоговый сигнал

Рис. 3.8 Цифровой сигнал

Сигналы, используемые для передачи потока данных должны быть информативными, т.е. иметь некоторые изменяющиеся параметры, которые позволят приемнику идентифицировать полученные данные. В качестве такого сигнала часто используется гармонический сигнал .

Гармонический сигнал - это гармонические колебания, со временем распространяющиеся в пространстве, которые несут в себе информацию или какие-то данные.Гармонические колебания - это колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону.

Гармонический сигнал несет в себе информацию в виде трех параметров: амплитуды , фазы и частоты и описывается формулой:

где А – амплитуда сигнала; ω – круговая частота: ω=2πf (f – линейная частота: f =1/T, величина обратная периоду Т); φ 0 – начальная фаза гармонического сигнала; t – время.

Рис. 3.9 Гармонический сигнал

Для обеспечения высокой скорости передачи данных важна частота: чем выше частота, тем больше скорость передачи.

Функция времени y(t) может быть произвольной и иметь различные частоты.

Вспомним теорию гармонического анализа и преобразование Фурье. Французский ученый Ж.Б. Фурье доказал, что любое изменение во времени некоторой функции можно аппроксимировать в виде конечной или бесконечной суммы ряда гармонических колебаний с разными амплитудами, частотами и начальными фазами.

Другими словами, любой периодический сигнал (аналоговый или цифровой), описываемый сложной функцией времени, может быть представлен в виде бесконечной или конечной суммы простых гармонических колебаний (гармоник) с частотами кратными основной частоте ω=2π/Т :

где i – номер гармоники; А i – амплитуда, φ i – начальная фаза, ω i – круговая частота i -й гармоники; t – время.

Первая гармоника ω 1 называется первой или основной гармоникой сигнала, все остальные гармоники называются высшими. При этом частота каждой последующей гармоники больше предыдущей ω 1 < ω 2 < ω 3 ….. < ω ∞.

Периодическим сигналом называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом.

Рис. 3.10 Формирование сигнала из суммы первых 4 гармоник и спектральная амплитудная диаграмма периодического сигнала

Набор гармонических колебаний, в сумме составляющий исходный сигнал, образует частотный спектр этого сигнала, т.е. область частот, составляющих данный сигнал.

Сигналов, которые обладали бы бесконечным спектром, в природе практически нет. Преобладающая часть энергии реальных сигналов сосредоточена в ограниченной области (полосе) частот, а сам сигнал представляется в виде конечной суммы гармонических колебаний. В этом случае спектр сигнала y(t) определяется как разность между частотами верхней и нижней гармоник: f n -f 1 , где n < ∞.

Из набора гармоник, составляющих сигнал, выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических колебаний, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Амплитудный и фазовый спектр однозначно определяют сигнал. Однако для многих практических задач достаточно ограничиться амплитудным спектром.

При передаче сигнала по каналу связи его форма искажается вследствие неодинаковой деформации гармоник различных частот. Это происходит из-за того, что физические параметры канала связи отличаются от идеальных. На сигнал влияют такие факторы, как затухание, шумы и помехи. Однако, основным фактором, оказывающим влияние на форму сигнала, является полоса пропускания канала связи. Для того чтобы передать сигнал без значительных искажений, канал связи должен иметь ширину полосы пропускания не менее ширины спектра частот передаваемого сигнала.

Рис. 3.11 Влияние физических параметров среды передачи на сигнал