Уровни физический сетевой канальный. Уровни эталонной модели osi. Модель OSI и реальные протоколы

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

  • тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),
  • тип модуляции сигнала,
  • сигнальные уровни логических дискретных состояний (нули и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень

Прикладной уровень (уровень приложений; англ. application layer ) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

  • позволяет приложениям использовать сетевые службы:
    • удалённый доступ к файлам и базам данных,
    • пересылка электронной почты;
  • отвечает за передачу служебной информации;
  • предоставляет приложениям информацию об ошибках;
  • формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP , HTTP , SMTP , SNMP , POP3 , FTP , XMPP , OSCAR , Modbus , SIP , TELNET и другие.

Уровень представления

Зачастую ошибочно называемый представительским уровнем, этот уровень (англ. presentation layer ) обеспечивает преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или шифрование/дешифрование, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC , например, это может быть мейнфрейм компании IBM , а другая - американский стандартный код обмена информацией ASCII (его использует большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так, что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами.

Другим форматом представлений является тэгированный формат файлов изображений TIFF , который обычно используется для растровых изображений с высоким разрешением . Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединённой экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG .

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital Interface , MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG , используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime - стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

Протоколы уровня представления: AFP - Apple Filing Protocol , ICA - Independent Computing Architecture , LPP - Lightweight Presentation Protocol, NCP - NetWare Core Protocol , NDR - Network Data Representation , XDR - eXternal Data Representation , X.25 PAD - Packet Assembler/Disassembler Protocol .

Сеансовый уровень

Транспортный уровень

Сетевой уровень

Канальный уровень

При разработке стеков протоколов на этом уровне решаются задачи помехоустойчивого кодирования. К таким способам кодирования относится код Хемминга , блочное кодирование, код Рида-Соломона .

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой. Это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI (англ. ) , NDIS , UDI .

Физический уровень

На этом уровне также работают концентраторы , повторители сигнала и медиаконвертеры .

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно , витая пара , коаксиальный кабель , спутниковый канал передач данных и т.п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются: V.35 , RS-232 , RS-485 , RJ-11 , RJ-45 , разъёмы AUI и BNC .

При разработке стеков протоколов на этом уровне решаются задачи синхронизации и линейного кодирования. К таким способам кодирования относится код NRZ , код RZ , MLT-3 , PAM5 , Манчестер II .

Протоколы физического уровня:

Начну с определения, как это принято. Модель OSI - это теоретическая идеальная модель передачи данных по сети. Это означает, что на практике вы никогда не встретите точного совпадения с этой моделью, это эталон, которого придерживаются разработчики сетевых программ и производители сетевого оборудования с целью поддержки совместимости своих продуктов. Можно сравнить это с представлениями людей об идеальном человеке - нигде не встретишь, но все знают, к чему нужно стремиться.


Сразу хочу обозначить один ньюанс - то, что передаётся по сети в пределах модели OSI, я буду называть данными, что не совсем корректно, но чтобы не путать начинающего читателя терминами, я пошёл на компромис с совестью.


Ниже представлена наиболее известная и наиболее понятная схема модели OSI. В статье будут ещё рисунки, но первый предлагаю считать основным:



Таблица состоит из двух колонок, на первоначальном этапе нас интересует лишь правая. Читать таблицу будем снизу вверх (а как иначе:)). На самом деле это не моя прихоть, а делаю так для удобства усвоения информации - от простого к сложному. Поехали!


В правой части вышеозначенной таблицы снизу вверх показн путь данных, передаваемых по сети (например, от вашего домашнего роутера до вашего комьютера). Уточнение - уровни OSI снизу вверх, то это будет путь данных на принимающей стороне, если сверху вниз, то наоборот - отправляющей. Надеюсь, пока понятно. Чтобы развеять окончательно сомнения, вот вам ещё схемка для наглядности:



Чтобы проследить путь данных и происходящие с ними изменения по уровням, достаточно представить, как они движутся вдоль синей линии на схеме, сначала продвигаясь сверху вниз по уровням OSI от первого компьютера, затем снизу вверх ко второму. Теперь более детально разберём каждый из уровней.


1) Физический (phisical) - к нему относится так называемая "среда передачи данных", т.е. провода, оптический кабель, радиоволна (в случае безпроводных соединений) и подобные. Например, если ваш компьютер подключен к интернету по кабелю, то за качество передачи данных на первом, физическом уровне, отвечают провода, контакты на конце провода, контакты разъёма сетевой карты вашего компьютера, а также внутренние электрические схемы на платах компьютера. У сетевых инженеров есть понятие "проблема с физикой" - это означает, что специалист усмотрел виновником "непередачи" данных устройство физического уровня, например где-то оборван сетевой кабель, или низкий уровень сигнала.


2) Канальный (datalink) - тут уже намного интереснее. Для понимания канального уровня нам придётся сначала усвоить понятие MAC-адреса, поскольку именно он будет главным действующим лицом в этой главе:). MAC-адрес ещё называют "физическим адресом", "аппаратным адресом". Представляет он собой набор из 12-и символов в шестнадцатиричной системе исчисления, разделённые на 6 октетов тире или двоеточием, например 08:00:27:b4:88:c1. Нужен он для однозначной идентификации сетевого устройства в сети. Теоритически, MAC-адрес является глобально уникальным, т.е. нигде в мире такого адреса быть не может и он "зашивается" в сетевое устройство на стадии производства. Однако, есть несложные способы его сменить на произвольный, да к тому же некоторые недобросовестные и малоизвестные производители не гнушаются тем, что клепают например, партию из 5000 сетевых карт с ровно одним и тем же MAC`ом. Соответственно, если как минимум два таких "брата-акробата" появятся в одной локальной сети, начнутся конфликты и проблемы.


Итак, на канальном уровне данные обрабатываются сетевым устройством, которое интересует лишь одно - наш пресловутый MAC-адрес, т.е. его интересует адресат доставки. К устройствам канального уровня относятся например, свитчи (они же коммутаторы) - они держат в своей памяти MAC-адреса сетевых устройств, с которыми у них есть непосредственная, прямая связь и при получении данных на свой принимающий порт сверяют MAC-адреса в данных с MAC-адресами, имеющимися в памяти. Если есть совпадения, то данные передаются адресату, остальные попросту игнорируются.


3) Сетевой (network) - "священный" уровень, понимание принципа функционирования которого большей частью и делает сетевого инженера таковым. Здесь уже железной рукой правит "IP-адрес", здесь он - основа основ. Благодаря ниличию IP-адреса становится возможным передача данных между компьютерами, не входящими в одну локальную сеть. Передача данных между разными локальными сетями называется маршрутизацией, а устройства, позволяющие это делать - маршрутизаторами (они же роутеры, хотя в последние годы понятие роутера сильно извратилось).


Итак, IP-адрес - если не вдаваться в детали, то это некий набор 12 цифр в десятеричной ("обычной") системе исчисления, разделённые на 4 октета, разделённых точкой, который присваиватеся сетевому устройству при подключении к сети. Тут нужно немного углубиться: например, многим известен адрес из ряда 192.168.1.23. Вполне очевидно, что тут никак не 12 цифр. Однако, если написать адрес в полном формате, всё становится на свои места - 192.168.001.023. Ещё глубже копать не будем на данном этапе, поскольку IP-адресация - это отдельная тема для рассказа и показа.


4) Транспортный уровень (transport) - как следует из названия, нужен именно для доставки и отправки данных до адресата. Проведя аналогию с нашей многострадальной почтой, то IP-адрес это собственно адрес доставки или получения, а транспортный протокол - это почтальон, который умеет читать и знает, как доставить письмо. Протоколы бывают разные, для разных целей, но смысл у них один - доставка.


Транспортный уровень последний, который по большому счёту интересует сетевых инженеров, системных администраторов. Если все 4 нижних уровня отработали как надо, но данные не дошли до пункта назначения, значит проблему нужно искать уже в программном обеспечении конкретного компьютера. Протоколы так называемых верхних уровней сильно волнуют программистов и иногда всё же системных администраторов (если он занимается обслуживанием серверов, например) . Поэтому дальше я опишу назначение этих уровней вскользь. К тому же, если посмотреть на ситуацию объективно, чаще всего на практике функции сразу нескольких верхних уровней модели OSI берёт на себя одно приложение или служба, и невозможно однозначно сказать, куда её отнести.


5) Сеансовый (session) - управляет открытием, закрытием сеанса передачи данных, проверяет права доступа, контролиует синхронизацию начала и окончания передачи. Например, если вы качаете какой-нибудь файл из интернета, то ваш браузер (или через что вы там скачиваете) отправляет запрос серверу, на котором находится файл. На этом моменте включаются сеансовые протоколы, которые и обеспечивают успешное скачивание файла, после чего по идее автоматически выключаютя, хотя есть варианты.


6) Представительский (presentation) - подготавливает данные к обработке конечным приложением. Например, если это текстовый файл, то нужно проверить кодировку (чтобы не получилось "крякозябров"), возможно распаковать из архива.... но тут как-раз явно прослеживается то, о чём я писал ранее - очень тяжело отделить, где заканчивается представительский уровень, а где начинается следующий:


7) Прикладной (Приложения (application)) - как видно из названия, уровень приложений, которые пользуются полученными данными и мы видим результат трудов всех уровней модели OSI. Например, вы читаете этот текст, потому что его открыл в верной кодировке, нужным шрифтом и т.д. ваш браузер.


И вот теперь, когда у нас есть хотя бы общее понимание технологии процесса, считаю необходимым поведать о том, биты, кадры, пакеты, блоки и данные. Если помните, в начале статьи я просил вас не обращать внимание на левую колонку в основной таблице. Итак, настало её время! Сейчас мы пробежимся снова по всем уровням модели OSI и узрим, как простые биты (нули и единицы) превращаются в данные. Идти будем так же снизу вверх, дабы не нарушать последовательности усвоения материала.


На физическом уровне мы имеем сигнал. Он может быть электрическим, оптическим, радиоволновым и т.п. Пока что это даже не биты, но сетевое устройство анализирует получаемый сигнал и преобразует его в нули е единицы. Этот процесс называется "аппаратное преобразование". Дальше, уже внутри сетевого устройства, биты объединяются в (в одном байте восемь бит), обрабатываются и передаются на канальный уровень.


На канальном уровне мы имеем так называемый кадр. Если грубо, то это пачка байт, от 64 до 1518-и в одной пачке, из которых коммутатор читатет заголовок, в котором записаны MAC-адреса получателя и отправителя, а также техническая информация. Увидев совпадения MAC-адреса в заголовке и в своей таблице коммутации (памяти), коммутатор передаёт кадры с такими совпадениями устройству назначения


На сетевом уровне ко всему этому добру ещё добавляются IP-адреса получателя и отправителя, которые извлекаются всё из того же заголовка и называется это пакет.


На транпортном уровне пакет адресуется соответствующему протоколу, код которому указан в служебной информации заголовка и отдаётся на обслуживание протоколам верхних уровней, для которых уже это и есть полноценные данные, т.е. информация в удобоваримой, пригодной для использования приложениями форме.


На схеме ниже это будет видно более наглядно:


В сегодняшней статье я хочу вернуться к основам, и расскажу о модели взаимодействия открытых систем OSI . Данный материал будет полезен начинающим системным администраторам и всем тем, кто интересуется построением компьютерных сетей.

Все составляющие сети, начиная со среды передачи данных и заканчивая оборудованием, функционируют и взаимодействуют друг с другом согласно своду правил, которые описаны в так называемой модели взаимодействия открытых систем .

Модель взаимодействия открытых систем OSI (Open System Interconnection) разработана международной организацией по стандартам ISO (Inernational Standarts Organization).

Согласно модели OSI, данные, передаваемые от источника к адресату, проходят семь уровней . На каждом уровне выполняется определенная задача, что в итоге не только гарантирует доставку данных в конечный пункт, но и делает их передачу независимой от применяемых для этого средств. Таким образом, достигается совместимость между сетями с разными топологиями и сетевым оборудованием.

Разделение всех сетевых средств по уровням упрощает их разработку и применение. Чем выше уровень, тем более сложную задачу он решает. Первые три уровня модели OSI (физический, канальный, сетевой ) тесно связаны с сетью и используемым сетевым оборудованием. Последние три уровня (сеансовый, уровень представления данных, прикладной ) реализуются средствами операционной системы и прикладных программ. Транспортный уровень выступает в качестве посредника между этими двумя группами.

Перед пересылкой через сеть, данные разбиваются на пакеты , т.е. порции информации, организованные определенным образом, чтобы они были понятны принимающим и передающим устройствам. При отправке данных пакет последовательно обрабатывается средствами всех уровней модели OSI, начиная с прикладного и заканчивая физическим. На каждом уровне к пакету добавляется управляющая информация данного уровня (называемая заголовком пакета ), которая необходима для успешной передачи данных по сети.

В результате это сетевое послание начинает напоминать многослойный бутерброд, который должен быть “съедобным” для получившего его компьютера. Для этого необходимо придерживаться определенных правил обмена данными между сетевыми компьютерами. Такие правила получили названия протоколов .

На принимающей стороне пакет проходит обработку средствами всех уровней модели OSI в обратном порядке, начиная с физического и заканчивая прикладным. На каждом уровне соответствующие средства, руководствуясь протоколом уровня, читают информацию пакета, затем удаляют информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передают пакет средствами следующего уровня. Когда пакет дойдет до прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Теперь рассмотрим работу каждого уровня модели OSI подробнее:

Физический уровень – самый нижний, за ним находится непосредственно канал связи, через который осуществляется передача информации. Он участвует в организации связи, учитывая особенности среды передачи данных. Так, он содержит все сведения о среде передачи данных: уровень и частоту сигнала, наличие помех, уровень затухания сигнала, сопротивление канала и т.д. Кроме того, именно он отвечает за передачу потока информации и преобразование ее в соответствии с существующими методами кодирования. Работа физического уровня изначально возлагается на сетевое оборудование.
Стоит отметить, что именно с помощью физического уровня определяется проводная и беспроводная сеть. В первом случае в качестве физической среды используется кабель, во втором – любой вид беспроводной связи, например радиоволны или инфракрасное излучение.

Канальный уровень выполняет самую сложную задачу – обеспечивает гарантированную передачу данных с помощью алгоритмов физического уровня и проверяет корректность полученных данных.

Прежде чем инициировать передачу данных, определяется доступность канала их передачи. Информация передается блоками, которые носят название кадров , или фреймов . Каждый такой кадр снабжается последовательностью бит в конце и начале блока, а также дополняется контрольной суммой. При приеме такого блока на канальный уровень получатель должен проверить целостность блока и сравнить принятую контрольную сумму с контрольной суммой, идущей в его составе. Если они совпадают, данные считаются корректными, иначе фиксируется ошибка и требуется повторная передача. В любом случае отправителю отсылается сигнал с результатом выполнения операции, и так происходит с каждым кадром. Таким образом, вторая важная задача канального уровня – проверка корректности данных.

Канальный уровень может реализовываться как аппаратно (например, с помощью коммутаторов), так и с помощью программного обеспечения (например, драйвера сетевого адаптера).

Сетевой уровень необходим для выполнения работы по передаче данных с предварительным определением оптимального пути движения пакетов. Поскольку сеть может состоять из сегментов с разными топологиями, главная задача сетевого уровня – определить кратчайший путь, попутно преобразовывая логические адреса и имена сетевых устройств в их физическое представление. Этот процесс носит название маршрутизации , и важность его трудно переоценить. Обладая схемой маршрутизации, которая постоянно обновляется в связи с возникновением разного рода “заторов” в сети, передача данных осуществляется в максимально короткие сроки и с максимальной скоростью.

Транспортный уровень используется для организации надежной передачи данных, которая исключает потерю информации, ее некорректность или дублирование. При этом контролируются соблюдение правильной последовательности при передаче-получении данных, деление их на более мелкие пакеты или объединение в более крупные для сохранения целостности информации.

Сеансовый уровень отвечает за создание, сопровождение и поддержание сеанса связи на время, необходимое для завершения передачи всего объема данных. Кроме того, он производит синхронизацию передачи пакетов, осуществляя проверку доставки и целостности пакета. В процессе передачи данных создаются специальные контрольные точки. Если при передаче-приеме произошел сбой, недостающие пакеты отправляются заново, начиная с ближайшей контрольной точки, что позволяет передать весь объем данных в максимально короткий срок, обеспечивая в целом хорошую скорость.

Уровень представления данных (или, как его еще называют, представительский уровень ) является промежуточным, его основная задача – преобразование данных из формата для передачи по сети в формат, понятный более высокому уровню, и наоборот. Кроме того, он отвечает за приведение данных к единому формату: когда информация передается между двумя абсолютно разными сетями с разным форматом данных, то прежде, чем их обработать, необходимо привести их к такому виду, который будет понятен как получателю, так и отправителю. Именно на этом уровне применяются алгоритмы шифрования и сжатия данных.

Прикладной уровень – последний и самый верхний в модели OSI. Отвечает за связь сети с пользователями – приложениями, которым требуется информация от сетевых служб всех уровней. С его помощью можно узнать все, что происходило в процессе передачи данных, а также информацию об ошибках, возникших в процессе их передачи. Кроме того, данный уровень обеспечивает работу всех внешних процессов, осуществляемых за счет доступа к сети – баз данных, почтовых клиентов, менеджеров загрузки файлов и т.д.

На просторах сети интернет я нашел картинку, на которой неизвестный автор представил сетевую модель OSI в виде бургера. Считаю, это очень запоминающийся образ. Если вдруг в какой-то ситуации (например, на собеседовании при устройстве на работу) вам понадобиться по памяти перечислить все семь уровней модели OSI в правильном порядке – просто вспомните данную картинку, и это вам поможет. Для удобства я перевел названия уровней с английского на русский язык:На сегодня это всё. В следующей статье я продолжу тему и расскажу про .

Сетевая модель OSI — это эталонная модель взаимодействия открытых систем, на английском звучит как Open Systems Interconnection Basic Reference Model. Ее назначение в обобщенном представлении средств сетевого взаимодействия.

То есть модель OSI — то обобщенные стандарты для разработчиков программ, благодаря которым любой компьютер одинаково может расшифровать данные, переданные с другого компьютера. Чтобы было понятно, приведу жизненный пример. Известно, что пчелы видят все окружающее их в утрафиалетовом свете. То есть одну и ту же картинку наш глаз и пчелиный воспринимает абсолютно по-разному и то, что видят насекомые, может быть незаметно для зрения человека.

То же самое и с компьютерами — если один разработчик пишет приложение на каком-либо программном языке, который понимает его собственный компьютер, но не доступен ни для одного другого, то на любом другом устройстве вы прочитать созданный этим приложением документ не сможете. Поэтому пришли к такой идее, чтобы при написании приложений следовать единому своду правил, понятному для всех.

Уровни OSI

Для наглядности процесс работы сети принято разделять на 7 уровней, на каждом из которых работает своя группа протоколов.

Сетевой протокол — это правила и технические процедуры, позволяющие компьютерам, объединенным в сеть, осуществлять соединение и обмен данными.
Группа протоколов, объединенных единой конечной целью, называется стек протоколов.

Для выполнения разных задач имеется несколько протоколов, которые занимаются обслуживанием систем, например, стек TCP/IP. Давайте здесь внимательно посмотрим на то, каким образом информация с одного компьютера отправляется по локальной сети на другой комп.

Задачи компьютера ОТПРАВИТЕЛЯ:

  • Взять данные из приложения
  • Разбить их на мелкие пакеты, если большой объем
  • Подготовить к передаче, то есть указать маршрут следования, зашифровать и перекодировать в сетевой формат.

Задачи компьютера ПОЛУЧАТЕЛЯ:

  • Принять пакеты данных
  • Удалить из него служебную информацию
  • Скопировать данные в буфер
  • После полного приема всех пакетов сформаровать из них исходный блок данных
  • Отдать его приложению

Для того, чтобы верно произвести все эти операции и нужен единый свод правил, то есть эталонная модель OSI.

Вернемся у к уровням OSI. Их принято отсчитывать в обратном порядке и в верхней части таблицы располагаются сетевые приложения, а в нижней — физическая среда передачи информации. По мере того, как данные от компьютера спускаются вниз непосредственно к сетевому кабелю, протоколы, работающие на разных уровнях, постепенно их преобразовывают, подготавливая к физической передаче.

Разберем их подробнее.

7. Прикладной уровень (Application Layer)

Его задача забрать у сетевого приложения данные и отправить на 6 уровень.

6. Уровень представления (Presentation Layer)

Переводит эти данные на единый универсальный язык. Дело в том, что каждый компьютерный процессор имеет собственный формат обработки данных, но в сеть они должны попасть в 1 универсальном формате — именно этим и занимается уровень представления.

5. Сеансовый уровень (Session Layer)

У него много задач.

  1. Установить сеанс связи с получателем. ПО предупреждает компьютер-получатель о том, что сейчас ему будут отправлены данные.
  2. Здесь же происходит распознавание имен и защита:
    • идентификация — распознавание имен
    • аутентификация — проверка по паролю
    • регистрация — присвоение полномочий
  3. Реализация того, какая из сторон осуществляет передачу информации и как долго это будет происходить.
  4. Расстановка контрольных точек в общем потоке данных для того, чтобы в случае потери какой-то части легко было установить, какая именно часть потеряна и следует отправить повторно.
  5. Сегментация — разбивка большого блока на маленькие пакеты.

4. Транспортный уровень (Transport Layer)

Обеспечивает приложениям необходимую степень защиты при доставке сообщений. Имеется две группы протоколов:

  • Протоколы, которые ориентированы на соединение — они отслеживают доставку данных и при необходимости запрашивают повторную отправку при неудаче. Это TCP — протокол контроля передачи информации.
  • Не ориентированные на соединение (UDP) — они просто отправляют блоки и дальше не следят за их доставкой.

3. Сетевой уровень (Network Layer)

Обеспечивает сквозную передачу пакета, рассчитывая его маршрут. На этом уровне в пакетах ко всей предыдущей динформации, сформированной другими уровнями, добавляются IP адреса отправителя и получателя. Именно с этого момент пакет данных называется собственно ПАКЕТОМ, у которого есть (IP протокол — это протокол межсетевого взаимодействия).

2. Канальный уровень (Data Link Layer)

Здесь происходит передача пакета в пределах одного кабеля, то есть одной локальной сети. Он работает только до пограничного маршрутизатора одной локальной сети. К полученному пакету канальный уровень добавляет свой заголовок — MAC адреса отправителя и получателя и в таком виде блок данных уже называется КАДРОМ.

При передачи за пределы одной локальной сети пакету присваивается MAC не хоста (компьютера), а маршрутизатора другой сети. Отсюда как раз появляется вопрос серых и белых IP, о которых шла речб в статье, на которую была выше дана ссылка. Серый — это адрес внутри одной локальной сети, который не используетс яза ее пределами. Белый — уникальный адрес во всем глобальном интернете.

При поступлении пакета на пограничный роутер IP пакета подменяется на IP этого роутера и вся локальная сеть выходит в глобальную, то есть интернет, под одним единственным IP адресом. Если адрес белый, то часть данных с IP адресом не изменяется.

1. Физический уровень (Transport layer)

Отвечает за преобразование двоичной информации в физический сигнал, который отправляется в физический канал передачи данных. Если это кабель, то сигнал электрический, если оптоволоконная сеть, то в оптический сигнал. Осуществляется это преобразование при помощи сетевого адаптера.

Стеки протоколов

TCP/IP — это стек протоколов, который управляет передачей данных как в локальной сети, так и в глобальной сети Интернет. Данный стек содержит 4 уровня, то есть по эталонной модели OSI каждый из них объединяет в себе несколько уровней.

  1. Прикладной (по OSI — прикладной, представления и сеансовый)
    За данный уровень отвечают протоколы:
    • TELNET — удаленный сеанс связи в виде командной строки
    • FTP — протокол передачи файлов
    • SMTP — протокол пересылки почты
    • POP3 и IMAP — приема почтовых отправлений
    • HTTP — работы с гипертекстовыми документами
  2. Транспортный (по OSI то же самое) — это уже описанные выше TCP и UDP.
  3. Межсетевой (по OSI — сетевой) — это протокол IP
  4. Уровень сетевых интерфейсов (по OSI — канальный и физический)За работу этого уровня отвечают драйверы сетевых адаптеров.

Терминология при обозначении блока данных

  • Поток — те данные, которыми оперируются на прикладном уровне
  • Дейтаграмма — блок данных на выходе с UPD, то есть у которого нет гарантированной доставки.
  • Сегмент — гарантированный для доставки блок на выходе с протокола TCP
  • Пакет — блок данных на выходе с протокола IP. поскольку на данном уровне он еще не гарантирован к доставке, то тоже может называться дейтаграммой.
  • Кадр — блок с присвоенными MAC адресами.

Спасибо! Не помогло

Из того, что протокол представляет собой соглашение, принятое двумя взаимодействующими объектами, в данном случае двумя работающими в сети компьютерами, совсем не следует, что он обязательно является стандартным. Но на практике при реализации сетей обычно используются стандартные протоколы . Это могут быть фирменные, национальные или международные стандарты .

В начале 80-х годов ряд международных организаций по стандартизации - ISO, ITU -T и некоторые другие - разработали модель, которая сыграла значительную роль в развитии сетей. Эта модель называется моделью ISO/ OSI .

Модель взаимодействия открытых систем (Open System Interconnection, OSI ) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов , дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.

Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.

В модели OSI (рис. 11.6) средства взаимодействия делятся на семь уровней: прикладной, представительный , сеансовый , транспортный, сетевой , канальный и физический. Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.


Рис. 11.6.

Модель OSI описывает только системные средства взаимодействия, реализуемые операционной системой, системными утилитами и аппаратными средствами. Модель не включает средства взаимодействия приложений конечных пользователей. Собственные протоколы взаимодействия приложения реализуют, обращаясь к системным средствам. Поэтому необходимо различать уровень взаимодействия приложений и прикладной уровень .

Следует также иметь в виду, что приложение может взять на себя функции некоторых верхних уровней модели OSI . Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается напрямую к системным средствам, ответственным за транспортировку сообщений по сети, которые располагаются на нижних уровнях модели OSI .

Итак, пусть приложение обращается с запросом к прикладному уровню, например к файловой службе . На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Обычное сообщение состоит из заголовка и поля данных. Заголовок содержит служебную информацию, которую необходимо передать через сеть прикладному уровню машины-адресата, чтобы сообщить ему, какую работу надо выполнить. В нашем случае заголовок, очевидно, должен содержать информацию о местонахождении файла и о типе операции, которую необходимо выполнить. Поле данных сообщения может быть пустым или содержать какие-либо данные, например те, которые необходимо записать в удаленный файл . Но для того чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни.

После формирования сообщения прикладной уровень направляет его вниз по стеку представительному уровню . Протокол представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию - заголовок представительного уровня , в котором содержатся указания для протокола представительного уровня машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню , который в свою очередь добавляет свой заголовок, и т. д. (Некоторые протоколы помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце, в виде так называемого "концевика".) Наконец, сообщение достигает нижнего, физического уровня , который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение "обрастает" заголовками всех уровней (