Дифференцирование сложной функции нескольких переменных примеры. Вопрос.Производные сложных функций нескольких переменных.(рассмотреть случаи одной и нескольких независимых переменных).Примеры. Производная сложной функции от двух переменных

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$

Дифференцирование сложных функций

Пусть для функции n - переменных аргументы являются также функциями переменных :

Справедлива следующая теорема о дифференцировании сложной функции.

Теорема 8. Если функции дифференцируемы в точке , а функция дифференцируема в соответствующей точке , где , . Тогда сложная функция дифференцируема в точке , причем частные производные определяются по формулам

где частные производные вычисляются в точке , а вычисляются в точке .

ƒ Докажем эту теорему для функции двух переменных. Пусть , а .

Пусть и произвольные приращения аргументов и в точке . Им соответствуют приращения функций и в точке . Приращениям и соответствует приращение функции в точке . Так как дифференцируема в точке , то ее приращение может быть записано в виде

где и вычисляются в точке , при и . В силу дифференцируемости функций и в точке , получаем

где вычисляется в точке ; .

Подставим (14) в (13) и перегруппируем слагаемые

Заметим, что при , так как и стремятся к нулю при . Это следует из того, что бесконечно малые при и . Но функции и дифференцируемы, а, следовательно, и непрерывны в точке . Поэтому если и , то . Тогда и при .

Так как частные производные вычисляются в точке , то получаем

Обозначим

а это и означает, что дифференцируема по переменным и , причем

Следствие. Если , причем , , т.е. , то производная по переменной t вычисляется по формуле

Если , то

Последнее выражение называетсяформулой полной производной для функции многих переменных.

Примеры. 1) Найти полную производную функции , где , .

Решение .

2) Найти полную производную функции , если , .

Решение .

Используя правила дифференцирования сложной функции, получим одно важное свойство дифференциала функции многих переменных.

Если независимые переменные функции , то дифференциал по определению равен:

Пусть теперь аргументы есть дифференцируемые функции в некоторой точке функции по переменным , а функция дифференцируема по переменным , . Тогда можно рассматривать как сложную функцию переменных , . Она по предыдущей теореме дифференцируема и имеет место соотношение

где определяется по формулам (12). Подставим (12) в (17) и, собирая коэффициенты при , получим

Поскольку коэффициент при производной равен дифференциалу функции , то для дифференциала сложной функции получили снова формулу (16).

Таким образом, формула первого дифференциала не зависит от того, являются ли ее аргументы функциями, или они независимыми. Это свойство называют инвариантностью формы первого дифференциала.

Формулу Тейлора (29) также можно записать в виде

ƒ Доказательство проведем для функции двух переменных или .

Сначала рассмотрим функцию одной переменной . Пусть раз дифференцируема в окрестности точки . Формула Тейлора для функции одной переменной с остаточным членом в формуле Лагранжа имеет

Так как – независимая переменная, то . По определению дифференциала функции одной переменной

Если обозначить , то (31) можно записать в виде

Рассмотрим некоторую - окрестность точки и в ней произвольную точку и соединим точки и отрезком прямой линии . Ясно, что координаты и точек этой прямой есть линейные функции параметра .

На отрезке прямой функция является сложной функцией параметра , т. к. . При этом она раз дифференцируема по на и для справедлива формула Тейлора (32), где , т.е.

Дифференциалы в формуле (32) представляют собой дифференциалы сложной функции , где , , , т.е.

Подставляя (33) в (32) и учитывая, что , получаем

Последнее слагаемое в (34) называют остаточным членом формулы Тейлора в форме Лагранжа

Без доказательства отметим, что если в условиях теоремы функция дифференцируема в точке m раз, то остаточный член можно записать в форме Пеано :

Глава 7. Функции нескольких переменных

7.1. Пространство R n . Множества в линейном пространстве.

Множество, элементами которого являются всевозможные упорядоченные наборы из n действительных чисел , обозначается и называется n-мерным арифметическим пространством ,а числоn называется размерностью пространства. Элемент множества называется точкой пространства, или вектором, а числа координатами этой точки. Точка =(0, 0, …0) называется нулевой или началом координат.

Пространство – есть множество действительных чисел, т.е. – числовая прямая; и – есть двумерная координатная геометрическая плоскость и трехмерное координатное геометрическое пространство соответственно. Векторы , , …, называются единичным базисом.

Для двух элементов , множества определяются понятия суммы элементов и произведения элемента на действительное число:

Очевидно, что и в силу этого определения и свойств действительных чисел справедливы равенства:

Согласно этим свойствам, пространство называется также линейным (векторным) пространством.

В линейном пространстве определяется скалярное произведение элементов и как действительное число, вычисляемое по следующему правилу:

Число называется длиной вектора или нормой . Векторы и называются ортогональными , если . Величина

, )= │ - │ =

называется расстоянием между элементами и .

Если и ненулевые векторы, то углом между ними называется угол , такой, что

Легко убедиться, что для любых элементов и действительного числа , выполняются скалярного произведения:

Линейное пространство с определенным в нем по формуле (1) скалярным произведением называется евклидовым пространством.

Пусть точка и . Множество всех точек для которых выполняются неравенства

называется n -мерным кубом с ребром и с центром в точке . Например, двумерный куб есть квадрат со стороной с центром в точке .

Множество точек , удовлетворяющих неравенству , называются n-мерным шаром радиуса с центром в точке , который также называют

- окрестностью точки в и обозначают ,

Таким образом, одномерный шар есть интервал длиной . Двумерный шар

есть круг, для которого выполняется неравенство

Определение 1 . Множество называется ограниченным , если существует
n - мерный шар, содержащий это множество.

Определение 2 . Функция, заданная на множестве натуральных чисел и принимающая значения, принадлежащие , называется последовательностью в пространстве и обозначается , где .

Определение 3 . Точка называется пределом последовательности , если для произвольного положительного числа существует натуральное число , такое что для любого числа выполняется неравенство .

Символически это определение записывается следующим образом:

Обозначение:

Из определения 3 следует, что , при . Такая последовательность называется сходящейся к .

Если последовательность не является сходящейся ни к одной точке, то она называется расходящейся .

Теорема 1. Для того чтобы последовательность сходилась к точке необходимо и достаточно, чтобы для любого номера выполнялось , т.е. чтобы последовательность i - х координат точек сходилась к i - й координате точки .

Доказательствоследует из неравенств

Последовательность называется ограниченной , если множество её значений ограничено, т.е.

Как и числовая последовательность, сходящаяся последовательность точек ограничена и имеет единственный предел.

Определение 4 . Последовательность называется фундаментальной (последовательностью Коши ), если для любого положительного числа можно указать такое натуральное число , что для произвольных натуральных чисел и , больших , выполняется , т.е.

Теорема 2 (критерий Коши). Для того чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

□ Необходимость. Пусть сходится к точке . Тогда получаем последовательность , сходящуюся к . . . , …, Х называют областью в . Если Х – область, то ее замыкание называют замкнутой областью .

Множества X и Y называют отделимыми , если ни одно из них не содержит точек прикосновения другого.

Множество Х называют связанным , если оно не может быть представлено в виде объединения двух отделимых множеств.

Множество Х называют выпуклым, если любые его две точки можно соединить отрезком, целиком принадлежащим этому множеству.

Пример . Опираясь на сформулированные выше определения, можно утверждать, что

– связанное, линейно-связанное, открытое, невыпуклое множество, является областью.

– связанное, линейно-связанное, неоткрытое, невыпуклое множество, не является областью.

– несвязанное, не линейно-связанное, открытое, невыпуклое множество, не является областью.

– несвязанное, не линейно-связанное, открытое множество, не является областью.

– связанное, линейно-связанное, открытое множество, является областью.

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:

Пример. Найти , если , где .

Решение. По формуле (1) имеем:

Пример. Найти частную производную и полную производную , если .

Решение. .

На основании формулы (2) получаем .

2°. Случай нескольких независимых переменных.

Пусть z = f(x;y) - функция двух переменных х и у, каждая из которых является функцией

независимой переменной t: х = x(t), у = y(t). В этом случае функция z=f(x(t);y(t)) является

сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Теорема . Если z == f (x; у) - дифференцируемая в точке М(х;у) D функция

и х = x(t) и у =y(t) - дифференцируемые функции независимой переменной t,

то производная сложной функции z(t) == f (x(t);y(t)) вычисляется по формуле

(3)

Частный случай: z = f(x; у), где у = у(х), т.е. z = f(x;y(x)) - сложная функция одной

независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной

t играет х. Согласно формуле (3) имеем:

.

Последняя формула носит название формулы полной производной.

Общий случай: z = f(x;y), где х = x(u;v), y=y(u;v). Тогда z = f{x(u;v);y(u;v)) - сложная

функция независимых переменных и и v. Ее частные производные и можно найти,

используя формулу (3) следующим образом. Зафиксировав v, заменяем в ней ,

соответствующими частными производными

Таким образом, производная сложной функции (z) по каждой независимой переменной и v)

равна сумме произведений частных производных этой функции (z) по ее промежуточным

переменным (x и у) на их производные по соответствующей независимой переменной (u и v).

Во всех рассмотренных случаях справедлива формула

(свойство инвариантности полного дифференциала).

Пример. Найти и , если z=f (x,y), где x=uv, .

Теорема. Пусть u = f (х, у) задана в области D и пусть х = х(t) и у = у(t) определены в области , причём, когда , то х и у принадлежат области D . Пусть функция u дифференцируема в точке M 0 (x 0 , y 0 , z 0), а функции х (t) и у (t) дифференцируемы в соответствующей точке t 0 , то сложная функция u = f [x (t ), y (t )]=F (t ) дифференцируема в точке t 0 и имеет место равенство:

.

Доказательство. Так как u дифференцируема по условию в точке (x 0 , y 0), то её полное приращение представляется в виде

Разделив это соотношение на , получим:

Перейдём к пределу при и получим формулу

.

Замечание 1. Если u = u (x, y ) и x = x , y = y (x ), то полная производная функции u по переменной х

или .

Последнее равенство можно использовать для доказательства правила дифференцирования функции одной переменной, заданной неявно в виде F (x , y ) = 0, где y = y (x ) (см. тему № 3 и пример 14).

Имеем: . Отсюда . (6.1)

Вернёмся к примеру 14 темы № 3:

;

.

Как видим, ответы совпали.

Замечание 2. Пусть u = f (х, у ), где х = х (t , v ), у = у (t , v ). Тогда u есть в конечном счёте сложная функция двух переменных t и v . Если теперь функция u дифференцируема в точке M 0 (x 0 , y 0), а функции х и у дифференцируемы в соответствующей точке (t 0 , v 0), то можно говорить о частных производных по t и v от сложной функции в точке (t 0 , v 0). Но если мы говорим о частной производной по t в указанной точке, то вторая переменная v считается постоянной и равной v 0 . Следовательно, речь идёт о производной только от сложной функции по t и, следовательно, мы можем воспользоваться выведенной формулой. Таким образом, получим.