Самодельный измеритель свч-излучения. Простые индикаторы СВЧ поля своими руками Схему индикатора поля для кв усилителя

Часто возникает необходимость произвести простейшую проверку исправности передатчика RC, исправен ли он и его антенна, излучает ли передатчик в эфир электромагнитные волны. В этом случае большую помощь окажет простейший индикатор электромагнитного поля. С его помощью можно проверить работу выходного каскада любого передатчика используемого в моделизме в диапазоне от нескольких МГц и до 2,5 ГГц. Им можно так же проверить работу сотового телефона на передачу.

В основе приборчика применён детектор с удвоением напряжения на СВЧ диодах типа КД514 советского производства. Принцип работы понятен из принципиальной схемы. К точке соединения диодов подключается антенна длиной 20.....25 см из проволоки диам. 1.....2 мм. К диодам подключен фильтрующий конденсатор (трубчатый, керамический) емкостью примерно 2200 пкФ. Диоды с конденсатором подпаиваются к клеммам микроамперметра, который является прибором индикации наличия электромагнитного поля. Катод правого по схеме диода подпаивается к клемме "+" , а анод левого по схеме диода подпаивается к клемме "-". Антенна индикатора может располагаться на расстоянии от нескольких сантиметров (передатчик на 2,4 ГГц или сотовый телефон) до 1 метра,
если передатчик работает в диапазоне 27.........40 Мгц. Такие передатчики имеют телескопическую антенну.
Все детали расположены на кусочке текстолита. Фильтрующий конденсатор расположен снизу платки и его на фото не видно.

Принципиальная схема

Фотографии.



Хочу представить схему устройства, которое имеет чувствительность к высокочастотному электромагнитному излучению. В частности, его можно применить для индикации входящих и исходящих вызовов мобильного телефона. Например, если телефон находится на беззвучном режиме, то это устройство позволит быстрее заметить входящий звонок или SMS.

Все это помещается на монтажную плату длиной 7 см.

Большую часть платы занимает схема индикации.

Также здесь присутствует антенна.


Антенной может служить отрезок любого провода длиной не менее 15 см. Я сделал ее в виде спирали, похожую на катушку. Ее свободный конец просто припаян к плате, чтобы он не болтался. Было испробовано много разных форм антенны, но я пришел к выводу, что важнее не форма, а её длина, с которой вы можете поэксперементировать.

Давайте рассмотрим схему.


Здесь собран усилитель на транзисторах.
В качестве транзистора VT1 использован КТ3102ЕМ. Решил выбрать именно его, потому что он имеет очень хорошую чувствительность.

Все остальные транзисторы (VT2-VT10) это 2N3904.

Рассмотрим схему индикации: транзисторы VT4-VT10 здесь являются ключевыми элементами, каждый из которых включает соответствующий светодиод при поступлении сигнала. В роли транзисторов этой шкалы могут быть использованы любые, можно даже КТ315, но при пайке удобнее использовать транзисторы в корпусе ТО-92 из-за удобного расположения выводов.
Здесь использованы пороговые диоды (VD3-VD8), и поэтому в каждый момент времени светится только один светодиод, показывая уровень сигнала. Правда этого не происходит по отношению к излучению мобильного телефона, так как сигнал постоянно пульсирует с большой частотой, вызывая свечение почти всех светодиодов.


Количество, "светодиодно-транзисторных" ячеек не следует делать больше восьми. Номиналы базовых резисторов здесь одинаковые и составляет 1 кОм. Номинал будет зависеть от коэффициента усиления транзисторов, при использовании КТ315 следует тоже использовать резисторы на 1 кОм.

В качестве диодов VD1, VD2 желательно использовать диоды Шоттки, так как они имеют меньшее падение напряжения, однако все работает даже при использовании распространенного 1N4001. Один из них (VD1 или VD2) можно исключить, если индикация будет слишком зашкаливать.
Все остальные диоды (VD3 - VD8) это те же самые 1N4001, но можно попробовать использовать любые имеющиеся под рукой.

Конденсатор С2 - электролитический, его оптимальная емкость от 10 до 22 мкФ, он на доли секунды задерживает погасание светодиодов.

Номинал резисторов R13 И R14 зависит от потребляемого светодиодами тока, и будет лежать в пределе от 300 до 680 Ом, но номинал резистора R13 может быть изменен в зависимости от питающего напряжения или при недостаточной яркости светодиодной шкалы. Вместо него можно припаять подстроечный резистор и добиться желаемой яркости.

На плате имеется переключатель, который включает некий "турбо режим" и пропускает ток в обход резистора R13, вследствие чего увеличивается яркость шкалы. Я его использую при питании от батарейки типа крона, когда она подсаживается и шкала светодиодов тускнеет. На схеме переключатель не указан, т.к. он не обязателен.

После подачи питания светодиод HL8 начинает гореть сразу и просто указывает на то, что устройство включено.

Питается схема напряжением от 5 до 9 Вольт.

Далее можно изготовить для него корпус, например из прозрачного пластика, а в качестве основания можно использовать фольгированный текстолит. Подключив антенну к металлизации платы, возможно удастся повысить чувствительность этого индикатора высокочастотных излучений.

Кстати, на излучение микроволновки он тоже реагирует.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ3102ЕМ

1 В блокнот
VT2-VT10 Биполярный транзистор

2N3904

9 В блокнот
VD1 Диод Шоттки

1N5818

1 Любой диод Шоттки В блокнот
VD2-VD8 Выпрямительный диод

1N4001

7 В блокнот
C1 Керамический конденсатор 1 - 10 нФ 1 В блокнот
C2 Электролитический конденсатор 10 - 22 мкФ 1 В блокнот
R1, R4 Резистор

1 МОм

2 В блокнот
R2 Резистор

470 кОм

1 В блокнот
R3, R5 Резистор

10 кОм

2

Описываемые в статье конструкции индикаторов электрического поля могут быть использованы для определения наличия электростатических потенциалов. Эти потенциалы опасны для многих полупроводниковых приборов (микросхем, полевых транзисторов), их наличие может вызвать взрыв пылевого или аэрозольного облака. Индикаторы также могут быть использованы для дистанционного определения наличия электрических полей высокой напряженности (от высоковольтных и высокочастотных установок, электросилового высоковольтного оборудования).

В качестве чувствительного элемента всех конструкций использованы полевые транзисторы, электрическое сопротивление которых зависит от напряжения на их управляющем электроде - затворе. При наведении электрического сигнала на управляющий электрод полевого транзистора электрическое сопротивление сток-исток последнего заметно изменяется. Соответственно, изменяется и величина электрического тока, протекающего через полевой транзистор. Для индикации изменения тока использованы светодиоды. Индикатор (рис.1) содержит три детали: полевой транзистор VT1 - датчик электрического поля, HL1 - индикатор тока, стабилитрон VD1 - элемент защиты полевого транзистора. В качестве антенны использован отрезок толстого изолированного провода длиной 10...15 см. Чем больше длина антенны - тем выше чувствительность устройства.

Индикатор на рис.2 отличается от предыдущего наличием регулируемого источника смещения на управляющем электроде полевого транзистора. Такая добавка объясняется тем, что ток через полевой транзистор зависит от начального смещения на его затворе. Для транзисторов даже одной партии изготовления, а тем более, для транзисторов разных типов, величина начального смещения для обеспечения равного тока через нагрузку заметно отличается. Следовательно, регулируя начальное смещение на затворе транзистора, можно задавать как начальный ток через сопротивление нагрузки (светодиод), так и управлять чувствительностью устройства.

Начальный ток через светодиод рассмотренных схем составляет 2...3 мА. Следующий индикатор (рис.3) использует для индикации три светодиода. В исходном состоянии (при отсутствии электрического поля) сопротивление канала исток-сток полевого транзистора невелико. Ток протекает преимущественно через индикатор включенного состояния устройства - светодиод HL1 зеленого цвета.

Этот светодиод шунтирует цепочку последовательно соединенных светодиодов HL2 и HL3. При наличии внешнего надпорогового электрического поля сопротивление канала исток-сток полевого транзистора возрастает. Происходит плавное или мгновенное отключение светодиода HL1. Ток от источника питания через ограничивающий резистор R1 начинает протекать через последовательно включенные светодиоды HL2 и HL3 красного свечения. Эти светодиоды могут быть установлены слева и справа относительно HL1. Индикаторы электрического поля повышенной чувствительности с использованием составных транзисторов показаны на рис.4 и 5. Принцип их работы соответствует ранее описанным конструкциям. Максимальный ток через светодиоды не должен превышать 20 мА.

Вместо указанных на схемах полевых транзисторов могут быть использованы другие полевые транзисторы (особенно в схемах с регулировкой начального смещения на затворе). Стабилитрон защиты можно использовать другого типа с максимальным напряжением стабилизации 10 В, желательно симметричный. В ряде схем (рис.1, 3, 4) стабилитрон, в ущерб надежности, может быть исключен из схемы. В этом случае во избежание повреждения полевого транзистора не допускается касания антенной заряженного предмета, сама антенна должна быть хорошо изолирована. При этом чувствительность индикатора заметно возрастает. Стабилитрон во всех схемах можно также заменить сопротивлением 10...30 МОм.

Схема простого индикатора поля , основой которого является дешёвая распространённая микросхема ОУ LM358, имеет 2 уровня индикации на светодиодах. Для увеличения - клик на картинку.

На чувствительность схемы влияют, прежде всего, антенна и диоды VD1, VD2. Подойдут такие диоды: «ГИ401А, Б; 1И401А, Б; АИ402, 3И402; 1И403, ГИ403». Так как у меня не было ни одного из перечисленных диодов, пришлось подбирать другие по наивысшей чувствительности. Подошли детекторные германиевые диоды «АА143». Напряжение работы ВЧ индикатора 6-12В. Ток потребления схемы 0,4-1 мА в режиме ожидания. Ток в режиме детекции зависит от потребляемого тока светодиодов и номиналов резисторов R4,R5. Светодиоды пришлось немного подшлифовать для рассеивания света.


Пороги индикации выставляются переменными резисторами R2,R3. Если нет резисторов R2,R3 номиналами как в схеме, то их можно подобрать таким способом: Если R2,R3~1к, то R1~30к; R2,R3~5к, то R1~150к; R2,R3~10к, то R1~300к и так далее соблюдая соотношение.


Настраивать R2,R3 нужно после полной пайки всех компонентов (включая антенну), отчистки платы от флюса (в моем случае канифоль) и прочих загрязнений, так как ОУ очень чувствителен к таким факторам. Индикатор ВЧ поля реагирует на излучение мобильных телефонов (GSM, GPRS, EDGE, 3G, WiFi), радиопередатчиков, импульсных БП, экрана телевизора, ЛДС. Если применить терминологию металлоискателей, то устройство похоже на «пинпоинтер», только для электромагнитного излучения. Для наглядности работы устройства, фото с включенным радиопередатчиком:

Есть излучение

Мощное излучение


От конденсатора С5 (от кружка) идет перемычка на минус питания схемы.


Высокочастотные поля (ВЧ-поля) – это электромагнитные колебания в диапазоне 100 000 – 30 000 000 Гц. Традиционно в этот диапазон включаются короткие, средние и длинные волны. Есть еще ультра- и сверхвысокочастотные волны.

Другими словами – ВЧ-поля, это те электромагнитные излучения, с использованием которых работает подавляющая часть окружающих нас приборов.

Индикатор ВЧ-поля позволяет определить наличие этих самых излучений и наводок.

Принцип работы его очень прост:

1.Необходима антенна, способная принимать сигнал высоких частот;

2.Принятые магнитные колебания преобразуются антенной в электрические импульсы;

3.Оповещение пользователя производится удобным для него способом (простым горением светодиодов, шкалой, соответствующей какому-либо ожидаемому уровню мощности сигнала, или даже цифровыми или жидкокристаллическими дисплеями, а также звуком).

Для каких случаев может понадобиться индикатор ВЧ ЭМ поля:

1.Определение наличия или отсутствия нежелательного излучения на рабочем месте (облучение радиоволнами может оказывать губительное воздействие на любой живой организм);

2.Поиск проводки или даже следящих устройств ("жучков");

3.Оповещение о состоявшемся обмене данными с сетью сотовой связи на мобильных телефонах;

4.И другие цели.

Итак, с целями и принципом работы все более-менее ясно. Но как же собрать такое устройство своими руками? Ниже приведем несколько простых схем.

Самая простейшая

Рис. 1. Схема индикатора

На изображении видно, что в составе по факту только два конденсатора, диода, одна антенна (подойдет металлический или медный проводник длиной 15-20 см) и милиамперметр (как самый недорогой – любой шкальный).

Чтобы определить наличие поля достаточной мощности необходимо поднести антенну к источнику ВЧ-излучения.

Амперметр можно заменить светодиодом.

Чувствительность указанной схемы сильно зависит от параметров диодов, поэтому их необходимо подбирать под заданные требования к обнаруживаемому излучению.
Если вам требуется обнаружить ВЧ-поле на выходе какого-либо прибора, то вместо антенны следует использовать простой щуп, который может подключаться к выводам техники гальванически. Но в этом случае необходимо позаботиться заранее о безопасности цепи, ведь выходной ток может пробить диоды и вывести узлы индикатора из строя.

Если вам требуется небольшое портативное устройство, способное весьма наглядно продемонстрировать наличие и относительную мощность ВЧ сигнала, то вам определенно будет интересна следующая схема.

Рис. 2. Схема с индикацией уровня ВЧ-поля на светодиодах

Этот вариант будет заметно чувствительнее своего аналога из первого рассмотренного случая благодаря встроенному усилителю на транзисторах.

Питается схема от обычной "кроны" (или любая другая батарея на 9 В), шкала загорается по мере усиления сигнала (светодиод HL8 сигнализирует о том, что прибор включен). Этого позволяют добиться транзисторы VT4-VT10, которые работают как ключи.
Монтаж схемы может быть осуществлен даже на макетной плате. И в этом случае ее габариты могут вписаться в 5*7 см (даже вместе с антенной, схема таких размеров даже в жестком корпусе и с батареей легко поместится в кармане).

Конечный результат, например, будет выглядеть следующим образом.

Рис. 3. Устройство в сборе

Задающий транзистор VT1 должен быть достаточно чувствительным к ВЧ-колебаниям и поэтому на его роль подойдет биполярный КТ3102ЕМ или аналогичный.

Все элементы в схеме в таблице.

Таблица

Тип элемента

Обозначение на схеме

Кодировка/номинал

Кол-во

Диод Шоттки

Выпрямительный диод

Биполярный транзистор

Биполярный транзистор

Сопротивление

Сопротивление

Сопротивление

Сопротивление

Сопротивление

Керамический конденсатор

Электролитический конденсатор

Светодиод

2...3 В, 15...20 мА

Индикатор со звуковой сигнализацией на операционных усилителях

Если вам нужно простое компактное и одновременно эффективное устройство для обнаружения ВЧ-волн, которое легко оповестит вас о наличии поля не светом и не стрелкой амперметра, а звуком, то схема ниже для вас.

Рис. 4. Схема индикатор со звуковой сигнализацией на операционных усилителях

Основа схемы – операционный усилитель средней точности КР140УД2Б (или аналог, например, CA3047T).