Схемотехника усилителей мощности звуковой частоты. Схемотехника умзч со стабилизацией режима. Схемы, справочники, даташиты

Рассматриваются вопросы минимизации искажений и повышения линейности усиления, затрагиваются проблемы, связанные с проектированием усилителей, такие как надежность, обеспечение стабильным питанием, защита от перегрузок и т.п. Приведен уникальный материал по режимам работы на реактивную нагрузку, необычным способам компенсации искажений и др.
Обсуждаемые вопросы снабжены подробными ссылками на справочные издания, призванные помочь читателю в дальнейшем исследовании в этой области.
Издание предназначено разработчикам аудиоаппаратуры, квалифицированным радиолюбителям, а также может быть полезно студентам старших курсов радиотехнических специальностей и всем читателям, интересующимся современной аудиоэлектроникой.

Предисловие
Глава 1. Общие сведения о УМЗЧ
Глава 2. История, архитектура и отрицательная обратная связь
Глава 3. Общие сведения об усилителях мощности
Глава 4. Малосигнальные каскады предварительного усиления
Глава 5. Оконечный каскад I
Глава 6. Выходной каскад II
Глава 7. Коррекция, скорость нарастания выходного напряжения и устойчивость
Глава 8. Источники питания и коэффициент подавления источника питания (PSRR)
Глава 9. Усилители мощности Класса А
Глава 10. Усилители мощности Класса G
Глава 11. Выходные каскады на полевых транзисторах
Глава 12. Термокомпенсация и динамика передачи тепла
Глава 13. Защита усилителя и громкоговорителей
Глава 14. Заземление и некоторые другие практические вопросы
Глава 15. Тестирование, требования к безопасности

Издательство: ДМК Пресс
Год: 2011
Страниц: 528
ISBN: 978-5-94074-702-4
Формат: PDF
Язык: русский
Размер: 13 Мб
Скачать: Дуглас С. Схемотехника современных усилителей
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Схема № 1

Выбор класса усилителя . Сразу предупредим радиолюбителя - делать усилитель класса A на транзисторах мы не будем. Причина проста - как было сказано во введении, транзистор усиливает не только полезный сигнал, но и поданное на него смещение. Проще говоря, усиливает постоянный ток. Ток этот вместе с полезным сигналом потечет по акустической системе (АС), а динамики, к сожалению, умеют этот постоянный ток воспроизводить. Делают они это самым очевидным образом - вытолкнув или втянув диффузор из нормального положения в противоестественное.

Попробуйте прижать пальцем диффузор динамика - и вы убедитесь, в какой кошмар превратится при этом издаваемый звук. Постоянный ток по своему действию с успехом заменяет ваши пальцы, поэтому динамической головке он абсолютно противопоказан. Отделить же постоянный ток от переменного сигнала можно только двумя средствами - трансформатором или конденсатором, - и оба варианта, что называется, один хуже другого.

Принципиальная схема

Схема первого усилителя, который мы соберем, приведена на рис. 11.18.

Это усилитель с обратной связью, выходной каскад которого работает в режиме В. Единственное достоинство этой схемы - простота, а также однотипность выходных транзисторов (не требуется специальные комплементарные пары). Тем не менее, она достаточно широко применяется в усилителях небольшой мощности. Еще один плюс схемы - она не требует никакой настройки, и при исправных деталях заработает сразу, а нам это сейчас очень важно.

Рассмотрим работу этой схемы. Усиливаемый сигнал подается на базу транзистора VT1. Усиленный этим транзистором сигнал с резистора R4 подается на базу составного транзистора VT2, VT4, а с него - на резистор R5.

Транзистор VT3 включен в режиме эмиттерного повторителя. Он усиливает положительные полуволны сигнала на резисторе R5 и подает их через конденсатор C4 на АС.

Отрицательные же полуволны усиливает составной транзистор VT2, VT4. При этом падение напряжения на диоде VD1 закрывает транзистор VT3. Сигнал с выхода усилителя подается на делитель цепи обратной связи R3, R6, а с него - на эмиттер входного транзистора VT1. Таким образом, транзистор VT1 у нас и играет роль устройства сравнения в цепи обратной связи.

Постоянный ток он усиливает с коэффициентом усиления, равным единице (потому что сопротивление конденсатора C постоянному току теоретически бесконечно), а полезный сигнал - с коэффициентом, равным соотношению R6/R3.

Как видим, величина емкостного сопротивления конденсатора в этой формуле не учитывается. Частота, начиная с которой конденсатором при расчетах можно пренебречь, называется частотой среза RC-цепочки. Частоту эту можно рассчитать по формуле

F = 1 / (R×C) .

Для нашего примера она будет около 18 Гц, т. е. более низкие частоты усилитель будет усиливать хуже, чем он мог бы.

Плата . Усилитель собран на плате из одностороннего стеклотекстолита толщиной 1.5 мм размерами 45×32.5 мм. Разводку печатной платы в зеркальном изображении и схему расположения деталей можно скачать . Видеоролик о работе усилителя в формате MOV скачать для просмотра можно . Хочу сразу предупредить радиолюбителя - звук, воспроизводимый усилителем, записывался в ролике с помощью встроенного в фотоаппарат микрофона, так что говорить о качестве звука, к сожалению, будет не совсем уместно! Внешний вид усилителя приведен на рис. 11.19.

Элементная база . При изготовлении усилителя транзисторы VT3, VT4 можно заменить любыми, рассчитанными на напряжение не менее напряжения питания усилителя, и допустимым током не менее 2 А. На такой же ток должен быть рассчитан и диод VD1.

Остальные транзисторы - любые с допустимым напряжением не менее напряжение питания, и допустимым током не менее 100 мА. Резисторы - любые с допустимой рассеиваемой мощностью не менее 0.125 Вт, конденсаторы - электролитические, с емкостью, не менее указанной на схеме, и рабочим напряжением на менее напряжения питания усилителя.

Радиаторы для усилителя . Прежде чем попробовать изготовить нашу вторую конструкцию, давайте, уважаемый радиолюбитель, остановимся на радиаторах для усилителя и приведем здесь весьма упрощенную методику их расчета.

Во-первых, вычисляем максимальную мощность усилителя по формуле:

P = (U × U) / (8 × R), Вт ,

где U - напряжение питания усилителя, В; R - сопротивление АС (обычно оно составляет 4 или 8 Ом, хотя бывают и исключения).

Во-вторых, вычисляем мощность, рассеиваемую на коллекторах транзисторов, по формуле:

P рас = 0,25 × P, Вт .

В-третьих, вычисляем площадь радиатора, необходимую для отвода соответствующего количества тепла:

S = 20 × P рас, см 2

В-четвертых, выбираем или изготавливаем радиатор, площадь поверхности которого будет не менее рассчитанной.

Указанный расчет носит весьма приблизительный характер, но для радиолюбительской практики его обычно бывает достаточно. Для нашего усилителя при напряжении питания 12 В и сопротивлении АС, равным 8 Ом, «правильным» радиатором была бы алюминиевая пластина размерами 2×3 см и толщиной не менее 5 мм для каждого транзистора. Имейте ввиду, что более тонкая пластина плохо передает тепло от транзистора к краям пластины. Хочется сразу предупредить - радиаторы во всех остальных усилителях тоже должны быть «нормальных» размеров. Каких именно - посчитайте сами!

Качество звучания . Собрав схему, вы обнаружите, что звук усилителя не совсем чистый.

Причина этого - «чистый» режим класса В в выходном каскаде, характерные искажения которого даже обратная связь полностью скомпенсировать не способна. Ради эксперимента попробуйте заменить в схеме транзистор VT1 на КТ3102ЕМ, а транзистор VT2 - на КТ3107Л. Эти транзисторы имеют значительно больший коэффициент усиления, чем КТ315Б и КТ361Б. И вы обнаружите, что звучание усилителя значительно улучшилось, хотя все равно останутся заметными некоторые искажения.

Причина этого также очевидна - больший коэффициент усиления усилителя в целом обеспечивает большую точность работы обратной связи, и больший ее компенсирующий эффект.

Продолжение читайте

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Изготовление высококачественного УМЗЧ - еще не решение проблемы, так как он - лишь одно из звеньев цепи устройств, образующих звуковоспроизводящий комплекс. И создавать такой комплекс следует системно, начиная с разработки требований, основанных как на желаемых результатах, так и на имеющихся возможностях. При этом в расчет должны приниматься не только технические характеристики звуковоспроизводящего тракта, но и параметры громкоговорителей, акустические параметры помещения, вопросы эргономики и надежности. Многие из этих требований взаимно противоречивы, поэтому решение такой задачи под силу только большому, связанному общей идеей коллективу конструкторов, каким является армия радиолюбителей.

Хотелось бы продолжить разработку идей, способствующих достижению высоких результатов при изготовлении высококачественных комплексов различной степени сложности. И начать не с их электрических характеристик, а с состава и конструктивного оформления.

По мнению автора, в радиокомплекс, кроме усилительно-коммутационного устройства, должны входить ЭПУ, кассетный магнитофон-приставка и тюнер с основными параметрами, обеспечивающими суммарный эффект, соответствующий акустическим характеристикам громкоговорителей. В комплекс может входить и катушечный магнитофон с более высокими параметрами, чем другие блоки, для перезаписи программ с кассет и катушек. Конструктивно названные части радиокомплекса должны быть объединены в неделимый музыкальный центр. Существующее мнение о возможном дальнейшем развитии радиокомплекса, блоки которого соединены между собой многочисленными кабелями, не разделяется автором. Дело в том, что при согласованных характеристиках блоков, обеспечивающих заданное качество вуковоспроизведения, улучшение параметров одного из них не приведет к улучшению суммарного эффекта. Последний может быть получен только в том случае, если радио-комплекс состоит из элементов с различными, заведомо худшими параметрами качества, а это в корне неверно. Но если даже такой радиокомплекс удовлетворяет по звучанию своего владельца при работе на громкоговорители низкой группы сложности, то он немедленно перестанет его удовлетворять после замены их акустической системой более высокой группы: сразу начнут проявляться недостатки слабых звеньев.

Таким образом, при замене громкоговорителей неминуемо возникает необходимость замены и других блоков, а в случае согласованности их характеристик - и всего радиокомплекса. Поэтому-то и целесообразно выполнять его в виде объединенных в музыкальный центр блоков, согласованных по основным параметрам. Такая конструкция комплекса обеспечивает повышение надежности, улучшение качественных и эргономических характеристик. Выигрыш в надежности обусловливается отсутствием соединительных кабелей и невозможностью неправильных соединений, в технических характеристиках – облегчением борьбы с фоновыми наводками, в эргономике -возможностью целесообразного размещения органов управления и самих узлов при компоновке музыкального центра в целом.

Тезис: громкоговорители - важнейший компонент радиокомплекса, вряд ли требует особых пояснений. Можно говорить о качестве любого звена звуковоспроизводящего тракта, о влиянии его параметров на качество звуковоспроизведения, но если электроакустический, преобразователь не может преобразовать электрические сигналы в звуковые в определенном диапазоне частот с приемлемым уровнем искажений, то никакое улучшение других узлов тракта, как правило, не приведет к пропорциональному улучшению звучания. Конечно, степень демпфирования громкоговорителей выходным сопротивлением УМЗЧ может в некоторой степени влиять на качество воспроизведения, но только до тех пор, пока она не достигнет предельного для данного электроакустического преобразователя значения. Частотной коррекцией усилителя можно расширить диапазон воспроизводимых акустической системой частот, но в ущерб другому параметру - динамическому диапазону усиливаемых без нелинейных искажений сигналов.

Громкоговорители приходится выбирать не только по параметрам и стоимости, но и с учетом возможности их размещения в жилом помещении, где они, видимо, не должны являться главным элементом интерьера. Последнее обстоятельство часто является определяющим: далеко не каждая семья рискнет сделать главным украшением своей квартиры два громоздких и не всегда изящно оформленных громкоговорителя.

Для ликвидации разрыва между желаемым качеством звуковоспроизведения и возможностями размещения громкоговорителей в квартире основные усилия промышленности и радиолюбителей-конструкторов следует, видимо, направить на создание достаточно высококачественных малогабаритных, эстетически грамотно оформленных и доступных но цене акустических систем. Их частотный диапазон, по мнению автора, должен быть не уже 30…16 000 Гц. Дальнейшее его расширение для бытовой радиоаппаратуры вряд ли целесообразно. Коэффициент гармоник в указанном диапазоне частот не должен превышать 3 % при номинальной мощности 25 Вт.

Практически такие же требования по частотной характеристике следует предъявить н ко второму по значимости звену радиокомплекса - УМЗЧ: оптимальным диапазоном частот дли него можно считать 20-20000 Гц (при спаде АЧХ на краях не более – 3 дБ). Не принципиальным был бы и коэффициент гармоник, который вполне мог бы достигать 0,5-1%, если бы нелинейность амплитудной характеристики УМЗЧ не приводила к появлению негармонических составляющих в спектре усиливаемого сигнала, называемых нитермодуляционными искажениями. Именно они, а не гармонические составляющие, являются источником неприятных призвуков. Частотные компоненты, лежащие за верхней границей звукового.диапазона и, следовательно, не слышимые ухом, при близком их расположении на частотной оси могут порождать комбинационные частоты, попадающие в область максимальной чувствительности человеческого уха . Высокая крутизна характеристик биполярных транзисторов, а следовательно, и кривизна (нелинейность) приводят к появлению комбинационных составляющих довольно высокого (6-го – 10-го) порядка со значительными уровнями.

Борьба с интермодуляционными искажениями, возникающими при ограничении сигнала, довольно проста: достаточно правильно выбрать амплитуду напряжения на входе УМЗЧ.

Пикфактор многочастотного сигнала близок, к пикфактору шума и наиболее вероятно равен 3. Следовательно, величина входного напряжения для неискаженного звуковоспроизведения должна быть в 3 раза меньше максимального значения, при котором выходной синусоидальный сигнал еще не искажается. Требуемый уровень входного напряжения подбирают при установке регулятора громкости в положение, соответствующее максимальной громкости. Следует, однако, учесть, что средняя мощность на выходе при этом будет примерно равна 0.1 от номинальной, и громкость звучании для выбранной акустической системы и конкретного помещения будет определяться именно ею. Учитывая, что наиболее типичный объем жилого помещения, составляющий 40-60 м 3 , требует подведения средней мощности около 4 Вт, номинальная суммарная мощность стереофонического УМЗЧ должна составлять 40 Вт – по 20 Вт на канал. Это значение и следует, по мнению автора, считать минимальным для высококачественного звуковоспроизведения.

Очевидно, что при указанной выходной мощности интермодуляционные искажения должны быть ниже уровня шумов УМЗЧ. Однако измерить интермодуляционные искажения с уровнем -70 дБ (0,03%) в присутствии основного сигнала большого уровни можно только при наличии анализатора спектра с динамическим диапазоном не менее 80 дБ. К сожалению, такие приборы практически недоступны большинству радиолюбителей. Косвенно о величине интермодуляционных искажений можно судить по коэффициенту гармоник, однако измерить и этот параметр на уровне -70 дБ также практически нечем: подходящего измерителя нелинейных искажений среди доступных радиолюбителю нет.

Правда, существует известный метод взаимной компенсации входного и выходного сигналов УМЗЧ. Оценка искажений таким способом наиболее приемлема для радиолюбителей, однако при уровнях -70 дБ и в этом случае возникают определенные трудности. Поэтому первоочередной задачей радиолюбителей-конструкторов, по мнению автора, следует считать разработку доступных для повторения интермодулометров. А до их появления придется пользоваться менее объективными, но более доступными методами.

Метод экспертиз, дает хорошие результаты и доступен широкому кругу радиолюбителей. Наблюдения Ю. Солнцева хорошо согласуются с наблюдениями автора. Некоторые выводы из них стоит повторить, придав им смысл критериев оценки качества. Это, во-первых, достижение наилучшего звучания высококачественных фонограмм при установке органов регулировки АЧХ предварительного усилителя в среднее положение. Всякое желание придать АЧХ форму, отличную от линейной, особенно в области высших частот, всегда свидетельствует о нелинейности амплитудной характеристики УМЗЧ, приводящей к появлению интермодуляционных и гармонических составляющих в спектре выходного сигнала.

Во-вторых, испытание усилителя сигналом того же музыкального содержания, но с внесенными в него гармоническими искажениями, например, при записи на магнитофон относительно невысокого качества. Чем линейнее УМЗЧ, тем менее будет кажущееся отличие от оригинала. Наличие в спектре фонограммы гармонических составляющих, еще не очень снижающих качество при воспроизведении через УМЗЧ с линейной амплитудной характеристикой, приводит к интермодуляционным искажениям и негармоническому засорению выходного сигнала при прослушивании через усилитель с недостаточно линейной характеристикой, что сразу улавливается даже не очень искушенным слухом.

К объективным методам оценки качества УМЗЧ, как, впрочем, и любого радиоэлектронного устройства, следует отнести экспертизу схемотехнических решений. Конечно, такая оценка требует определенных знаний в области радиоэлектроники и не под силу радиослушателям без радиотехнической подготовки, однако она вполне доступна радиолюбителям, способным сравнить схемотехнические особенности того или иного усилителя по предлагаемой ниже методике.

Прежде всего следует обратить внимание на выходной каскад УМЗЧ. Известно, что добиться приемлемого уровня нелинейных искажений в усилителях, работающих в режиме В, при малой выходной мощности очень трудно.

Известно также, что режим А в УМЗЧ приводит к недопустимому снижентю КПД и существенным конструктивным затратам на отвод тепла от выходных транзисторов.

Промежуточный режим АВ тоже нелишен недостатков: он требует тщательного выбора режима транзисторов выходного каскада и температурной стабилизации их тока покоя. Применение различных тепловых ООС конструктивно сложно и недопустимо инерционно. Токосъемы подстроечных резисторов, с помощью которых устанавливают ток покоя выходных транзисторов, со временем окисляются и могут стать причиной выхода транзисторов оконечного каскада из строя.

Наиболее удачным решением, по мнению автора, является сочетание усилителей, работающих в режимах А и В (и даже А и С), причем такое, в котором при малой выходной мощности работает только первый из них, а при большой мощности - оба (маломощный усилитель, работающий в режиме А, является одновременно возбудителем выходного каскада, транзисторы которого работают в режиме В и закрыты при малых уровнях сигнала). Это позволяет отказаться от стабилизации рабочей точки транзисторов оконечного каскада, обеспечив постоянство режима только маломощного усилителя. ООС в подобных усилителях работает в режимах как малого, так и большого сигналов, что достигается прямой связью входа и выхода оконечного каскада.

Для повышения линейности амплитудных характеристик предварительных усилителей напряжение питания должно значительно (в 5-10 раз) превосходить амплитуду необходимого выходного напряжения. Это особенно важно для усилительных каскадов темброблоков и эквалайзеров, в которых линейность усиления должна обеспечиваться при максимальном подъеме АЧХ в соответствующих областях звукового диапазона частот.

С этой же целью предварительные усилители должны быть выполнены на основе дифференциальных каскадов в комбинации с эмиттерными повторителями. Преимущество первых – значительно большая линейность по сравнению с каскадом ОЭ (для получения коэффициента гармоник, равного 1%, на вход каскада ОЭ достаточно подать напряжение 1 мВ тогда как дифференциальный каскад вносит такие искажения при уровне, в 18 раз большем), вторых - 100 %-ная ООС по току, исправляющая искажения, и низкое выходное сопротивление, уменьшающее наводки.

Очень существенно распределение усиления по тракту радиокомплекса. С одной стороны, номинальное входное напряжение УМЗЧ должно гарантировать отсутствие фоновых наводок и значительное превышение сигнала над шумом (те же 70 дБ), с другой стороны – оно не должно приводить к искажениям сигнала в предварительных усилителях из-за захода пиков сложного сигнала в область ограничения.

Наиболее правильным было бы выбрать чувствительность УМЗЧ максимально возможной (по превышению над шумами), а с фоновыми наводками бороться схемотехническими и конструктивными решениями. Одним из них дожег быть, например, применение симметричного входного каскада УМЗЧ с заключением обоих проводов, идущих к нему от предварительного усилителя, в общий экран и соединением этого экрана и одного из сигнальных проводов с общим проводом на плате предварительного усилителя. К чисто конструктивным решениям следует отнести объединение блоков радиокомплекса в музыкальный центр, где все они питаются от одного сетевого трансформатора; рациональное размещение узлов (в первую очередь, сетевого трансформатора, двигателей ЭПУ и магнитофона) по отношению один к другому, входам, усилителей, коммутационным устройствам, регуляторам громкости и тембра; правильное выполнение экранировки и шины общего провода.

Все названные схемотехнические условия обеспечения высокого качества усилительной части радиокомплекса, на первый взгляд, требуют существенного его усложнения. Однако применение ОУ во всех звеньях тракта позволяет добиться нужных результатов при простоте реализации.

Принципиальная схема этого усилителя (на отечественных деталях) приведена на рис. 1. Его первый каскад выполнен на ОУ DA1, включенном вместе с транзисторами VT1 и VT2 таким образом, чтобы, во-первых, увеличить скорость нарастания напряжения на выходе усилителя, а во-вторых, обеспечить номинальное напряжение питания ОУ. Предоконечный каскад (VT3 и VT4) работает в режиме А, выходной (VT5 и VT6) – в режиме В. Диоды VD1 и VD2 гарантируют отсутствие тока покоя выходного каскада при изменении тока через транзисторы VT3 и VT4 (за счет их нагрева) в 1,5-2 раза. Цель ООС, общая для постоянного и переменного токов, не содержит конденсатора большой емкости и обладает малой постоянной времени для переходных процессов. Элементы R10, R11 C5 и L1 корректируют ФЧХ цепи ООС, обеспечивая при правильной настройке малый уровень интермодуляционных искажений и коэффициента гармоник. Параметры этих элементов связаны простым соотношением (L1 = R10R11C5) и могут быть легко рассчитаны для каждого конкретного случая.

При напряжении питания ±30 В, сопротивлении нагрузки 4 Ом и входном напряжении 100 мВ УМЗЧ отдает максимальную мощность 100 Вт. При номинальной мощности 60 Вт коэффициент гармоник на частоте 1000 Гц не превышает 0,006 %.

Автором этот УМЗЧ испытан при напряжении питания ±20 В и сопротивлении нагрузки 4 Ом (были изменены номиналы элементов R5, R6, С5, R11). Номинальное входное напряжение было выбрано равным 0,75 В (при желании его можно изменить в любую сторону подбором резистора R3). Налаживание свелось к установке тока покоя транзисторов VT3 и VT4 (в пределах 10-20 мА) подбором резисторов R7 и R8 при отсутствии тока через транзисторы VT5 и VT6. При питании от стабилизированного источника УМЗЧ в диапазоне частот 20-20000 Гц обеспечивал максимальную выходную мощность 40 Вт, от нестабилизированного - около 35 Вт. Коэффициент гармоник на частоте 1000 Гц при выходной мощности 20 Вт, измеренный векторным индикатором нелинейных искажений, не превышал 0,01 %. Испытания проводились совместно с И. T. Акулиничевым. Субъективно усилитель обеспечивает более высокое качество звуковоспроизведения, чем УМЗЧ музыкального центра «Вега-115-стерео», удовлетворяя критериям оценки. Полученные результаты подтвердили возможность создания простого в схемотехническом отношении высококачественного УМЗЧ.

Возможный вариант печатной платы показан на рис. 2. Она рассчитана на установку резисторов МЛТ и конденсаторов КМ (о назначении элементов, изображенных штриховыми линиями, будет сказано далее). Катушка L1 намотана в два слоя (9+7 витков) проводом ПЭВ-2, 0,8 на оправке диаметром 7 мм и для жесткости пропитана клеем «Момент-1».

Описанный УМЗЧ не имеет защиты от короткого замыкания в нагрузке и не содержит устройств, защищающих громкоговорители при пробое одного из его транзисторов. По мнению автора, эти функции вполне способны выполнить калиброванные плавкие предохранители.

Схемотехнические решения, примененные в усилителе, гарантируют отсутствие щелчков в громкоговорителях при включении и выключении питания.

При использовании совместно с УМЗЧ предварительного усилителя, у которого на выходе присутствует постоянное напряжение, возможно появление щелчков по его вине. В этом случае можно применить устройство защиты акустической системы, выполненное по схеме рис. 3. Срабатывает оно при появлении на выходе УМЗЧ напряжения более 1,2 В любой полярности, в том числе и в случае, если напряжения на выходах каналов имеют разную полярность. Задержка подключения громкоговорителей - 1,5-2 с. Применение стабилитронов VD5 и VD6 с малым напряжением стабилизации предохраняет ОУ DA1 от перегрузок по входу при значительных уровнях постоянного напряжения на выходах каналов стереоусилителя. Для питания устройства необходима отдельная обмотка сетевого трансформатора напряжением 5-6 В.

Для получения нулевого потенциала на выходе рокот-фильтра необходимо через резисторы сопротивлением 68-82 кОм подать на базу транзисторов V1 и V1′ дополнительное смещение от источника положительного напряжения.

В заключение несколько слов о выборе деталей. Параметры усилительного тракта в значительной мере зависят от элементной базы. В частности, ОУ которые предполагается использовать в предварительном или корректирующем усилителях, не должны содержать в выходном каскаде транзисторов, работающих в режиме В, как это, например, имеет место в К153УД1. ОУ, предназначенные для УМЗЧ, аналогичных по схеме приведенному на рис. 1, обязательно должно иметь двухтактный выходной каскад, работающий в режиме АВ (К140УД6, К154УД1, К154УД2, К154УДЗ, К140УД7, К544УД2 и т. п.). Кроме того, желательно использовать ОУ со скоростью нарастания выходного напряжения не менее 2 В/мкс.

Некоторые из названных ОУ требуют балансировки или включения корректирующей цепи. На этот случай в печатной плате (рис. 2) предусмотрены отверстия для установки балансировочных резисторов R15, RI6 (их суммарное сопротивление - около 10 кОм) и корректирующего конденсатора С13. Печатный проводник, к которому припаяны выводы резисторов R15, R16, соединяют с соответствующим выводом питания ОУ. При использовании ОУ К544УД2, К154УД1-У154УДЗ на входе УМЗЧ рекомендуется включить ФНЧ. состоящий из резистора R14 (10 кОм) и конденсатора С12 (150 пФ).

В усилителях с. входным и выходным потенциалом, близким к 0, нельзя использовать в качестве переходных оксидные конденсаторы, в том числе и неполярные. Все оксидные конденсаторы требуют подачи поляризующего напряжения, в 410 раз превышающего амплитуду приложенного переменного напряжения. Невыполнение этого условия снижает надежность усилителя и может привести к дополнительным искажениям.

Все транзисторы, через которые проходит сигнал в усилительном тракте, обязательно должны быть высокочастотными, а используемые во входных каскадах - малошумящими. В усилителях мощности желательно применять транзисторы с металлическим корпусом, так как обеспечить хороший отвод тепла при существующей конструкции металло-пластмассовых корпусов удается с большим трудом.

Используемая литература:

  1. Лексины Валентин и Виктор. О заметности нелинейных искажений усилителя мощности.- Радио, 1984, .№ 2, с. 33-35.
  2. Солнцев Ю, Высококачественный усилитель мощности.-Радио, 1984, № 5, с. 29-34
  3. Солнцев Ю. Какой же Кг допустим? -Радио, 1985, .№ 2, с. 26-28.
  4. Атаев Д.. Болотников В. Как снизить уровень помех в тракте ЗЧ.- Радио, 1984, № 4, с. 43-45; № 5, с. 35, 36.
  5. Атаев Д., Болотников В. Унификация в радиолюбительских конструкциях.- Радио, 1983, № 12, с. 32-35.
  6. Пикерсгнль А., Беспалов И. Феномен «транзисторною» звучания.- Радио, 1981, № 12, с. 36-38.
  7. Ефимов А., Ефимов Б., Томас Г. Выбор мощности стереофонических усилителей.- Радио, 1977, № 6, с. 39-41.
  8. Акулиинчев И. Селекция сигнала искажений.- Радио. 1983, № 10, с. 42-44.
  9. Тнтце У., Шенк К. Полупроводниковая схемотехника.- М.: Мир, 1982.
  10. Schmidt G. Current dumping amplifier.- Elector. 1978, .№ 7/8.
  11. Роганов В. Устройство защиты громкоговорителей.- Радио, 1981. № 11, с. 44. 45.
  12. Агеев А. Усилительный блок любительского радиокомплекса.- Радио, 1982, № 8, с. 31-35.
  13. Солнцев Ю. Высококачественный предварительный усилитель.- Радио, 1985, № 4, с. 32-35.
  14. Лексины Валентин и Виктор. Предусилитель-корректор с рокот-фильтром,- Радио. 1983, № 7, с. 48-50.

Общеизвестно, что качество звучания любого звуковоспроизводящего комплекса во многом зависит от параметров усилителя мощности звуковой частоты (УМЗЧ). К настоящему времени опубликовано множество вариантов транзисторных УМЗЧ, отличающихся порой очень высокими качественными показателями, однако поиск новых схемных решений, позволяющих в еще большей мере приблизить звучание звуковоспроизводящих устройств к естественному, продолжается. В этой статье рассмотрены некоторые пути совершенствования УМЗЧ на современной элементной базе.

Несмотря иа многообразие схем транзисторных УМЗЧ, принципы их построения практически одни и те же. Подобно современным интегральным ОУ они, как правило, двухкаскадные (рис. 1). Основное усиление по напряжению обеспечивают первые два каскада. Выходной же каскад - чаще всего мощный повторитель напряжения, поэтому данная конфигурация УМЗЧ и получила название двухкаскадной.

Критерием качества УМЗЧ является характер и величина вносимых им искажений. Попытаемся классифицировать известные в настоящее время искажения сигнала ЗЧ.

Прежде всего обратим внимание на то, неидеальностью каких характеристик вызван тот или иной их вид. С этой целью разделим искажения на статические и динамические (см. рис. 2). Первые обусловлены нелинейностью статических передаточных характеристик каскадов УМЗЧ (например, нелинейностью входных и выходных характеристик используемых усилительных элементов), вторые - неидеальностью их переходных характеристик, под которыми понимается реакция усилители на скачок входного напряжения. Статические искажения, в свою очередь, можно подразделить на гармонические, выражающиеся в изменении формы исходного сигнала определенной частоты, и интермодуляциоиные, проявляющиеся в обогащении спектра выходного сигнала комбинационными составляющими.

Статические интермодуляцнонные искажения могут быть амплитудными и фазовыми (обусловлены соответственно взаимной амплитудной и фазовой модуляцией входных сигналов). Динамические искажения также можно разделить на гармонические и интермодуляциониые. В первом случае речь идет об искажениях формы входного синусоидального сигнала, когда его амплитуда и частота превышают критические значения, определяемые максимальной скоростью нарастания выходного напряжения. Если же при этих условиях на входе УМЗЧ присутствуют еще и сигналы других частот, то появляются условия для возникновения и сильных интермодуляционных искажений.

Как уже было сказано, динамические искажения зависят, в частности, от такого параметра, как скорость нарастания выходного сигнала V u , которая связана с максимальной частотой f в усиливаемого сигнала максимальной амплитуды соотношением V u =2πf B U m , где U m - максимальная амплитуда выходного напряжения. Если учесть, что выходная синусоидальная мощность P=U m 2 /2R H , где R H - сопротивление нагрузки, то можно получить V u =2πf в √2PR н.

Оценим необходимую для неискаженного звуковоспроизведения скорость нарастания выходного напряжения, если, например, все спектральные составляющие усиливаемого сигнала лежат ниже 20 кГц, а мощность усилителя на нагрузке сопротивлением 4 Ом равна 100 Вт. В этом случае в соответствии с приведенной выше формулой V u =3,6 В/мкс. Дальнейшее увеличение скорости нарастания на динамические искажения в полосе звуковых частот Практически не влияет .

Приведенная классификация удобна тем, что позволяет наиболее полно охарактеризовать искажения, вносимые усилителем. Следует иметь в виду, что все виды искажений взаимосвязаны. Например, изменение коэффициента гармоник неизбежно скажется на интермодуляционных искажениях и т. д.

Человеческое ухо наиболее чувствительно к интермодуляционным искажениям. Их заметность в значительной мере зависит от вида музыкальной программы. Психоакустические исследования показали , что высококвалифицированные эксперты начинали замечать изменения в характере звучания фортепьяно, как только среднеквадратичное значение интермодуляциониых искажений достигало 0,003 % (!). Для сравнения укажем, что порог заметности искажения звучания хора - 0,03 %, скрипки - примерно 0,3 %.

Рассмотрим теперь пути совершенствования отдельных каскадов УМЗЧ с целью построения устройства с минимальными искажениями.

Входной каскад определяет такие важные параметры УМЗЧ, как напряжение смешения «нуля» (постоянная составляющая выходного напряжения усилителя) и его температурную стабильность. От схемотехнического решения этого каскада во многом зависят максимальная скорость нарастания выходного напряжения и отношение сигнал/шум. В подавляющем большинстве современных УМЗЧ входной каскад - дифференциальный. Требования к нему определяются видом ООС, охватывающей весь УМЗЧ. Сопоставим инвертирующий (с параллельной ООС) и неинвертирующий (с последовательной ООС) усилители. Коэффициент усиления неинвертирующего усилителя (рис. 3,а) K U =1+R3/R2, инвертирующего (рис. 3,б) K U =R3/R2. Достоинство неинвертнрующего усилителя - высокое входное сопротивление, которое ограничено у него сопротивлением резисторе R1(200 кОм), в то время как у инвертирующего усилителя оно практически равно сопротивлению резистора R2 (10 кОм).

Для устранения влияния синфазной составляющей и снижения искажений неиивертируюшего усилителя следует повышать выходное сопротивление источника тока и подбирать в дифференциальный каскад пару транзисторов с возможно более близкими параметрами . В тех случаях, когда величина синфазной составляющей достигает нескольких вольт, вместо обычного однотранзисторного источника тока целесообразно использовать более совершенный источник тока на двух транзисторах VT5, VT6 (рис. 4) (3, 7]. В качестве дифференциальной пары VT3, VT4 использована интегральная сборка К159НТ1. транзисторы которой имеют близкие значения статического коэффициента h 21Э и напряжений эмиттер-база. Для снижения рабочего напряжения транзисторов сборки (допустимое напряжение между их коллекторами и эмиттерами составляет 20 В) в коллекторные цепи введены более высоковольтные транзисторы VT1. VT2, включенные по схеме с ОБ. Резисторы R5, R9 также способствуют уменьшению динамических искажений .

Основным способом улучшения качественных показателей УМЗЧ остается введение глубокой ООС, что возможно при достаточно большом коэффициенте усиления исходного (без ООС) усилителя. Усиление же типового входного дифференциального каскада составляет 10 ... 26 дБ. Увеличить его можно, заменив пассивную нагрузку в коллекторных цепях транзисторов VT1, VT2 (рис. 4) активной. Ее функции может выполнять так называемое «токовое зеркало» (рис. 5,а)или «токовое зеркало» со следящей ООС (рис. 5, б). Нетрудно заметить, что в последнем случае напряжение между базой и коллектором транзистора VT2" равно напряжению на эмиттерном переходе транзистора VT3" Благодаря этому падение напряжения на участке эмиттер-коллектор транзистора VT2" не превышает 1,3 ... 1,4 В. Напряжение же между эмиттером и коллектором транзистора VT1" зависит от каскада усиления напряжения, но и оно, как правило, не превышает 3 В. Все это позволяет использовать в «токовом зеркале» транзисторы с малым допустимым напряжением коллектор-эмиттер, в частности, транзисторную сборку КТС3103А.

Следует заметить, что для реализации большого усиления, которое способен обеспечить дифференциальный каскад с такой нагрузкой, входное сопротивление следующего за ним каскада должно быть достаточно высоким.

Во входном каскаде по схеме на рис. 4 можно использовать транзисторы КТ312В. КТ315В. КТ315Г и КТ3102Б и транзисторные матрицы серии К198 (К198НТ1-К198НТ4). Стабилитрон VD1 можно заменить на КС139А, VD3 - на КС175А или КС168А (в последнем случае сопротивление резистора R7 необходимо уменьшить соответственно до 3,3 или 3 кОм, а резистора R3 - увеличить до 3,9 кОм). Стабистор VD2 можно заменить одним-двумя последовательно включенными кремниевыми диодами, транзистор VT3 (рис. 5, б) - транзистором КТ3107Б, КТ3108А, КТ3108В, КТ313А, КТ313Б.

Экспериментальные исследования типового усилителя (рис. 1) показали, что входной каскад и усилитель напряжения вносят примерно равный вклад в ннтермодуляционные искажения УМЗЧ. Авторами был испытан неинвертирующий УМЗЧ с коэффициентом интермодуляционных искажений 0,1 %. Введение в его входной каскад двухтранзисторного источника тока (рис. 4) позволило снизить эти искажения в 3 ... 4 раза.

Усилитель напряжения вносит основной вклад в коэффициент усиления УМЗЧ с разомкнутой ООС. Он должен обеспечивать максимальную амплитуду выходного напряжения при минимальных гармонических и интермодуляционных искажениях, а для согласования с входным каскадом, работающим на активную нагрузку, иметь достаточно высокое входное сопротивление. В типовых УМЗЧ функции усилителя напряжения выполняет обычно каскад на биполярном транзисторе, включенном по схеме ОЭ (рис. 1). Источник тока GI2 играет роль динамической нагрузки и способствует увеличению максимальной амплитуды выходного сигнала. Отметим основные недостатки такого усилителя напряжения.

Начнем с того, что выходные характеристики транзистора, включенного по схеме ОЭ, существенно нелинейны, поскольку его коллекторный ток определяется в этом случае не только током базы, но в значительной степени и напряжением коллектор-эмиттер, которое в усилителях напряжения изменяется на величину размаха выходного сигнала. Эффект же модуляции коллекторного тока напряжением коллектор-эмиттер приводит к значительным гармоническим искажениям (до 10 % и более ).

Известно также, что нелинейность входных характеристик транзистора в рассматриваемом включении приводит к сильной зависимости входного сопротивления каскада от подаваемого на его вход напряжения, а поскольку это напряжение является выходным для предыдущего каскада, характер нагрузки входного каскада становится нелинейным.

И, наконец, емкость коллекторного перехода транзистора, включенного по схеме ОЭ, также изменяется в такт с колебаниями напряжения на коллекторе, в результате чего частота среза усилителя, линейно зависящая от суммарной емкости коллекторного перехода и конденсатора С1 (см. рис. 1), становится зависимой от выходного напряжения этого каскада. Модуляция же частоты среза выходным напряжением приводит к появлению фазовых интермодуляциониых искажений .

Вместо транзисторов КТ3107Г (VT1, VT2) в усилителе можно использовать любые другие кремниевые транзисторы с большим коэффициентом передачи тока h 21э (например, КТ3107 с индексами Л-Ж. К. Л, КТ361 с индексами Б и Е), вместо КТ313А (VT3) - любой транзистор с малым значением h 21Э и большим допустимым напряжением между коллектором и эмиттером. Стабилитрон VD1 можно заменить на КС 139 А.

Недостаток рассмотренного каскада - несколько меньшая (по сравнению с традиционным) амплитуда выходного сигнала из-за падения напряжения на двух транзисторах VT2, VT3 и резисторе R3 - несуществен, так как в большинстве случаев разница не превышает 5 ... 7 %.

Выходной каскад должен обеспечить в низкоомной нагрузке неискаженный сигнал требуемой мощности при высоком КПД. Рассмотрим традиционный каскад (рис. 1) на комплементарных парах транзисторов, включенных по схеме двухтактного эмиттерного повторигеля. В качестве выходных используют обычно мощные комплементарные низкочастотные транзисторы серий KT8I8, КТ819 и др. с граничной частотой 3 ... 4 МГц. При включении таких транзисторов по схеме на рис. 1 в их базах Накапливаются электрические заряды, что эквивалентно наличию внутренней емкости база-эмиттер, которая зависит от граничной частоты и у современных мощных транзисторов может достигать десятых-сотых долей микрофарады.

Рассмотрим это явление подробнее. Допустим, что на вход каскада поступает положительная полуволна сигнала и работает верхнее (по схеме) плечо двухтактного каскада (VT4, VT6). Транзистор VT4 включен по схеме ОК и имеет малое выходное сопротивление. Поэтому протекающий через него ток быстро заряжает входную емкость транзистора VT6 и открывает его. Теперь, чтобы полностью закрыть транзистор VT6, необходимо разрядить эту емкость, а разряжаться она, как нетрудно видеть, может в основном через резисторы R5, R6, причем относительно медленно. При использовании транзистора с граничной частотой 3МГц и резисторов R5, R6 сопротивлением 100 Ом скорость убывания коллекторного тока транзистора VT6 составит примерно 0,15 А/мкс . После смены полярности выходного напряжения включается нижнее (по схеме) плечо выходного каскада. Но поскольку ёмкость база-эмиттер транзистора VT6 к этому времени не успевает разрядиться, он не закрывается и через транзистор VT7, помимо своего, протекает коллекторный ток транзистора VT6. В результате из-за возникновения сквозного тока не только повышается рассеиваемая транзисторами на высоких частотах мощность и падает КПД усилителя, но и растут искажения сигнала. При чрезмерно высокой скорости нарастания выходного напряжения и воздействии на усилитель сигнала высокочастотной помехи возможен даже выход мощных транзисторов из строя .

Простейший способ устранения описанного недостатка - уменьшение сопротивления резисторов R5, R6, однако при этом возрастает мощность, рассеиваемая на транзисторах VT4, VT5. Другой путь - видоизменить схему выходного каскада (рис. 7). Здесь рассасывание избыточного заряда форсировано путем подключения резистора R3 к эмиттеру транзистора VT2, который находится под более отрицательным потенциалом, чем точка, с которой снимается выходное напряжение.

Из-за высокого выходного сопротивления предоконечного каскада избыточный заряд может накапливаться и на базах транзисторов VT1, VT2.

Чтобы этого не произошло, их базы соединены с общим проводом через резисторы Rl, R2. Экспериментальная проверка показала, что описанные меры достаточно эффективны: по сравнению с типовым скорость убывания коллекторного тока в каскаде по схеме на рис. 7 оказывается вчетверо большей (0,6 А/мкс), а вызванные рассмотренным эффектом искажения на частоте 20 кГц - примерно втрое меньшими.

Известно, что наименьшие искажения обеспечивают усилители, работающие а режиме А. Однако в подавляющем большинстве современных усилителей мощности ЗЧ (УМЗЧ) используется режим АВ. Объясняется это низким КПД первых из названных усилителей, что создает определенные трудности, связанные с отводом значительного количества тепла от выходных транзисторов, а также с проблемой обеспечения стабильности тока покой. Так, если а оконечном каскаде, работающем в режиме АВ, изменение этого тока в полтора-два раза вполне допустимо (хотя и нежелательно), то такое же изменение тока покой усилители, работающего в режиме А, может привести к самым серьезным последствиям. Современные мощные комплементарные транзисторы с рассеиваемой на коллекторе мощностью 100 и более ватт смягчают этот недостаток режима А, однако используют его все же преимущественно в УМЗЧ со сравнительно небольшой выходной мощностью. Схема одного из таких УМЗЧ показана на рис. 8. .

Основные технические характеристики усилителя
Номинальное входное напряжение, В 1
Номинальная выходная мощность, Вт 12,5
Сопротивлепие нагрузки. Ом 8
Номинальный диапазон частот (по уровню - 3дБ),Гц 5—225000
Коэффициент гармоник, %, в диапазоне частот 5 ... 20000 Гц при выходной мощности до 10 Bт 0,02
Скорость нарастания выходном напряжения, В/мкс 10
Относительный уровень фона, дБ -85
Относительный уровень шума, дБ -103

Особенность данного УМЗЧ - использование в каждом его плече как транзистора (VT1 И VT2), так и интегрального ОУ (DA1 и DA2). Оба плеча усилителя охвачены ООС. Для снижения искажений коэффициенты усиления обоих плеч должны быть одинаковы, что выполняется при соблюдении равенства: R2/R1=R3/R4.

Ток покоя стабилизируется следящим устройством, состоящим из дифференциального усилителя DA4 и инвертирующего повторителя напряжения DA3. Работает оно так. Любое колебание тока, протекающего через выходные транзисторы, изменяет падение напряжения на резисторах R22, R23, которое усиливается ОУ DA4 И подается на вход ОУ DA2, а через инвертор DA3 - на вход ОУ DA1. Цепи R19C3 и R20C11 образуют фильтры нижних частот, пропускающие на выход ОУ DA4 лишь самые низкочастотные колебания тока покоя. Начальное значение этого тока устанавливают резистором R26. Корректирующие цепи R14C9 и R15C10 предохраняют усилитель от самовозбуждения. Все ОУ питаются стабилизированным напряжением ± 18 В (цепи питании на схеме не показаны).При повторении усилителя транзисторы МJ1001 и MJ901 можно заменить на КТ827 с индексами А, Б и КТ825 с индексами Г, Д соответственно, микросхемы LM301 - на ОУ К153УД2 (в металлическом корпусе) или К553УД2 (в пластмассовом). Возможно также применение ОУ К157УД2 и К153УД6 (модификация ОУ К153УД2) и других ОУ с соответствующими цепями коррекции и напряжениями питания (если они ниже ±18 В, то, естественно, снизится выходная мощность усилителя).


В последнее время удалось существенно повысить КПД УМЗЧ, работающих в режиме А, и приблизить его к значению, характерному для усилителей, работающих в режиме АВ. Это стало возможным благодаря использованию режима работы выходного каскада с плавающей рабочей точкой (ее положение на рабочей характеристике изменяется в зависимости от уровня входного сигнала). На рис. 9 приведена принципиальная схема выходного каскада УМЗЧ , работающего в таком режиме. При увеличении напряжения не входе усилителя растет ток, протекающий через нагрузку, а значит, и через резисторы R10 (положительная полуволна), R11 (отрицательная полуволна). При увеличении падения напряжения на этих резисторах возрастает ток через резисторы R7, R6 и, как следствие этого, уменьшаются токи баз транзисторов VT3, VT2 и увеличиваются напряжения между их коллекторами и эмиттерами. Последнее обстоятельство приводит к увеличению напряжения смещения и соответствующему сдвигу рабочей точки выходных транзисторов в область больших значений тока покоя.

Во всех каскадах усилителя, кроме оконечного (VT12 - VT15), можно использовать практически любые маломощные высокочастотные транзисторы. Для реализации каскадов на транзисторах VT4 - VT7 («токовые зеркала») особенно удобны транзисторные сборки К159НТ1В и КТС3103А. В оконечном каскаде могут работать комплементарные пары транзисторов КТ814 и КТ815, КТ816 и КТ817, КТ818 и КТ819 с любыми, но одинаковыми буквенными индексами.

Частотная коррекция УМЗЧ. Снижения динамических искажений можно достичь, только уделив серьезное внимание частотной Коррекции УМЗЧ, охваченного глубокой ООС. Чтобы лучше разобраться а вопросах, связанных с реализацией оптимальной частотной коррекции, рассмотрим АЧХ типового УМЗЧ с коэффициентом передачи при разомкнутой цепи ООС, равным 60 дБ, а при замкнутой 26 дБ (рис. 10). Чтобы обеспечить такую глубокую ООС во всем диапазоне звуковых частот, полоса пропускания усилителя с разомкнутой цепью ООС должна быть не уже 20 кГц (Первый перегиб АЧХ на частоте f 1). Далее начинается спад усиления с крутизной 20 дБ на декаду. Полоса пропускания усилителя с замкнутой цепью ООС (частота f 2) определяется точкой пересечения АЧХ УМЗЧ с замкнутой и разомкнутой цепью ООС и в нашем случае равна 1 МГц. Для предупреждения самовозбуждения усилителя частота второго перегиба АЧХ f 3 , которая определяется, как правило, граничной частотой транзисторов оконечного каскада, должна быть в области, где коэффициент усиления усилителя с разомкнутой ООС менее 26 дБ.

Реальный звуковой сигнал носит импульсный характер, поэтому хорошее представление о динамических свойствах усилителя можно получить по его реакции на скачок входного напряжения. Эта реакция зависит, как известно, от переходной характеристики усилителя, которая для УМЗЧ с рассмотренной выше формой АЧХ может быть описана с помощью коэффициента затухания ξ вычисляемого по формуле: ξ=1/2√f 3 /f 2 . Переходные характеристики УМЗЧ при различных значениях этого коэффициента приведены на рис. 11. По величине первого выброса выходного напряжения U вых =f(t) можно судить об относительной устойчивости усилителя. Как видно из приведенных на рис. 11 характеристик, наиболее велик он при малых коэффициентах затухания. Такие усилители склонны к самовозбуждению и при прочих равных условиях имеют большие динамические искажения. С точки зрения минимизации искажений наиболее хорош усилитель с апериодической переходной характеристикой (ξ>1). Однако обеспечение такого коэффициента достигается слишком дорогой ценой. Дело в том, что в этом случае усилитель должен иметь АЧХ, частота второго перегиба f 3 которой лежит далеко за пределами полосы пропускания всего УМЗЧ с замкнутой цепью ООС (f 3 ≥4f 2). Реализовать такой усилитель технически очень трудно, поэтому приходится идти на компромисс, задавшись более низким коэффициентом затухания. В литературе в качестве оптимального рекомендуется коэффициент затухания ξ=0,8, при котором f 3 ≥2,6f 2 , а первый выброс выходного напряжения не превышает 1,4 %.

Указанные выше соотношения справедливы лишь для линейной области АЧХ УМЗЧ при условии, что скорость нарастания выходного напряжений усилителя не ограничивает длительность переходного процесса, а частота f 3 достаточно превышает f 2 . При невыполнении этих условий переходный процесс будет затягиваться и иметь более выраженный колебательный характер. Если АЧХ УМЗЧ с разомкнутой цепью ООС такова, что коэффициент усиления К u на частоте f 2 больше 26 дБ (штрих-пунктирная линия на рис. 10), то необходимо скорректировать ее до требуемого вида. В двухкаскйдных УМЗЧ коррекцию чаще всего производят во втором каскаде, приняв меры по обеспечению требуемой скорости нарастания при максимальном выходном сигнале. При этом следует иметь в виду, что максимальная скорость нарастания не связана прямой зависимостью с малосигнальной полосой пропускания усилителя.

Для налаживания усилителя на его вход подают прямоугольные импульсы и, наблюдай переходный процесс УМЗЧ на экране осциллографа, подбором корректирующего конденсатора (С1 на рис. 1 или рис. 5) добиваются еле заметного выброса выходного напряжения.

Таким образом, УМЗЧ с малыми динамическими искажениями должен обеспечивать переходный процесс с ξ не менее 0,8 (см. рис. 11) и иметь достаточную скорость нарастания выходного напряжения. Необходимо так-же выполнение требований по линеаризации всех его каскадов.

Конечное сопротивление «земляных» шин приводит к тому, что импульсы тока по общему проводу с выхода УМЗЧ могут попасть на его вход. Для борьбы с такими помехами обычно рекомендуют увеличивать сечение шин общего провода и соединять все идущие к ним проводники в одной точке. Но наиболее действенным способом защиты является гальваническая развязка общего провода входного каскада от мощной шины питания. Это возможно в УМЗЧ с дифференциальным входным каскадом. С общим проводом источника сигнала (левым по схеме на рис. 12) связаны лишь выводы резисторов R1 и R2. Все остальные проводники, соединенные с общим проводом, подключены к мощной шине источника питания (правой по схеме). Однако в этом случае отключение по каким-либо причинам источника сигнале может привести к выходу УМЗЧ из строй, так как левая «земляная» шина оказывается ни к чему не подсоединенной и состояние выходного каскада становится непредсказуемым. Во избежание такой ситуации обе «земляные» шины соединяют резистором R4. Его сопротивление должно быть не очень малым, чтобы помехи от мощной шины питания не могли проникнуть на вход усилителя, и в то же время не слишком большим, чтобы не влиять на глубину ООС. На практике сопротивление защитного резистора выбирают в пределах от единиц до десятков Ом.


Пути совершенствования УМЗЧ. В последние годы наметилась тенденция улучшения качественных показателей УМЗЧ путем построения полностью двухтактных (включая входные каскады) усилителей с мощными МОП-транзисторами (с изолированным затвором) в выходном каскаде. По сравнению с биполярными МОП-транзисторы выгодно отличаются лучшей линейностью проходных характеристик, высоким входным сопротивлением, хорошими частотными свойствами. У них отсутствует явление вторичного теплового пробоя, так как с увеличением температуры кристалла из-за большой рассеиваемой мощности сопротивление канала транзистора возрастает. Это позволяет в некоторых случаях обойтись без защиты УМЗЧ от тепловых перегрузок. В качестве примера на рис. 13 приведена схема полностью двухтактного усилители с комплементарными парами мощных МОП-транзисторов в выходном каскаде японской фирмы «Hitachi» .

Основные технические характеристики

Двухтактный входной каскад (VT1, VT2; VT4, VT6) позволил обойтись простыми источниками тока на транзисторах VT3 и VT5. Усилитель напряжения построен по схеме, аналогичной приведенной на рис. 6. Для увеличения выходной мощности транзисторы оконечного каскада VT14, VT16 (2SKI34) и VT15, VT17 (2SJ49) соединены параллельно. Фильтр R1C2 защищает вход УМЗЧ от проникания высокочастотных помех. Для исключения разбалансировки усилители из-за входных токов к неинвертирующему и инвертирующему входам подключены резисторы R2 и R27 одинакового сопротивления.

В данном усилителе разделены общие провода входных и выходных каскадов (см. предыдущий раздел), на что указывает изображение резистора R23. Такое неявное указание на разделение общих шин часто встречается в схемах УМЗЧ, публикуемых в зарубежных изданиях.

Ограниченный объем журнальной статьи не позволил познакомить читателей с другими интересными схемотехническими решениями УМЗЧ, поэтому тем, кто интересуется данной тематикой, рекомендуем обратиться к указанной в прилагаемом списке литературы.

ЛИТЕРАТУРА

  1. Cherry Edward M. Amplitude and Phase of Intermodulation Distortion.- Journal of the Audio Engineering Society, 1983, v. 31. № 5, p. 298-303.
  2. Cordell Robert R. Another View on TIM. Part 1.- Audio. 1980, v. 64 №2, p. 38-49.
  3. Cordell Robert R. Phase Intermodulation Distortion Instrumentation and Measurements.- Journal of the Audio Engineering Society, 1983. v. 31. № 3, p. 114-123.
  4. Krauter M. Nf-Verstarker: Der Gesamt-eindruck zait,- Funkschau, 1983, №18, 59-61.
  5. Petrl-Larml M., Otala M., Lammasmieml J. Psychoacoustic Detection Threshold of Transient Intermodulation Distortion.- Journal of the Audio Engineering Society, 1980. v. 28, № 3, p. 98-104.
  6. Достал И. Операционные усилители. Пер. с англ.- М.: Мир, 1982.
  7. Scott Robert F. Power MOSFET Amplifiers.- Radio-Electronics. 1983. v. 54, № 7, p. 80-81.
  8. Leach Marshall W. An Amplifier Input Stage Design Criterion for the Suppression of Dynamic Distortions.- Journal of the Audio Engineering Society, 1981. v. 29, № 4. p. 249-251.
  9. Cherry Edward M. Transient Intermodulation Distortion.- Part I: Hard Nonlinearity.- IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981. v. ASSP-29, № 2. p. 137-146.
  10. Cherry Edward M. Feedback. Sensitivity, and Stability of Audio Power Amplifiers.- Journal of the Audio Engineering Society, 1982, v. 30, № 5. p. 282-294.
  11. Kondo Hikaru. Nuevo conceplo en amplificadores de potencia para audio sistema "super A" de JVC.- Mundo eleutronico, 1980, № 102, p. 75-81.
  12. Borbely Erno. High Power High Quality Amplifier Using MOSFETs.-Wireless World. 1983, v. 89. № 1556. p. 69-75.
  13. Cordell Robert R. Another View of TIM. Part 2.- Audio. 1980, v. 64. № 3. p. 39-40.
  14. Титце У., Шенк К. Полупроводниковая схемотехника. Справочное руководство. Пер. с нем.- М.: Мир, 1982, с. 240.
  15. Pollock N. 12 W class A power amplifier.-Wireless World. 1980. Vol. 86. № 1529, to. 74.
  16. Jung Walter G., Marsh Richard. Selection Capacitors for Optimum Performance. Part I.-Audio, 1980. Vol. 64. № 2. p. 52-86.
  17. Cherry Edward M. A New Distortion Mechanism It Class B. Amplifiers.- journal of the Audio Engineering Society. 1981. Vol. 20, № 5. p. 327-328.
  18. Ефремов В. С. Двухтактные усилители со стабилизацией минимальных токов плеч.-Полупроводниковая электроника в технике связи.- М.: Радио и связь, 1983. вып. 93, с. 87-94.
  19. Sandman A, Low cross-over distortion class B amplifier.- Wireless World. 1971. Vol. 77. № 1429, p. 341.
  20. Horowitz Mannle. How to Design Analog Circuits. Audio Power Amplifiers.- Radio-Etectronics, 1983, Vol. 54. № 5, p. 73-76.
  21. Hood Llnaley J. L. 60-100 W MOSFET Audio Amplifier.- Wireless World, 1982, Vol. 88. № 1558, p. 83-86.