Приставка к мультиметру для проверки. ESR (ЭПС) измеритель — приставка к цифровому мультиметру. Электронная схема токовых клещей

Эта статья продолжает тему расширения возможностей популярных мультиметров серии 83x. Малый потребляемый приставкой ток позволяет питать её от внутреннего стабилизатора АЦП мультиметра. С помощью этой приставки можно измерять индуктивность катушек и дросселей, ёмкость конденсаторов без выпаивания их из платы.

Конструкции измерительных приставок к мультиметрам помимо различия схемных решений и методов измерений того или иного параметра различны ещё и по способности работать от собственного источника питания и без него, используя стабилизатор напряжения АЦП мультиметра. Приставки, питаемые от стабилизатора АЦП мультиметра, по мнению автора, более удобны в эксплуатации, особенно "вне дома". В случае необходимости их можно питать и от внешнего источника напряжением 3 В, например, от двух гальванических элементов. Конечно, встаёт вопрос о потребляемом такой приставкой токе, который не должен превышать нескольких миллиампер, но применение современной элементной базы в сочетании с оптимальной схемотехникой решает эту задачу. Впрочем, вопрос о потребляемом токе всегда был и будет актуален, особенно для измерительных приборов c автономным питанием, когда продолжительность работы от автономного источника зачастую определяет выбор прибора.

При разработке LC-метра основное внимание было уделено не только минимизации потребляемого тока, но и возможности измерения индуктивности катушек и дросселей, ёмкости конденсаторов без выпаивания их из платы. Такую возможность следует всегда учитывать при разработке подобных измерительных приборов. Можно привести немало примеров, когда радиолюбители в своих конструкциях, к сожалению, не обращают на это внимания. Если, например, измерять ёмкость конденсатора методом зарядки стабильным током, то уже при напряжении на конденсаторе более 0,3...0,4 В без выпайки его из платы достоверно определить ёмкость зачастую невозможно.

Принцип работы LC-метра не нов , он основан на вычислении квадрата измеренного периода собственных колебаний в резонансном LC-контуре, который связан с параметрами его элементов соотношениями

Т = 2π √LC или LC = (Т/2π) 2 .

Из этой формулы следует, что измеряемая индуктивность линейно связана с квадратом периода колебаний при неизменной ёмкости в контуре. Очевидно, что той же линейной зависимостью связана и измеряемая ёмкость при неизменной индуктивности, и для измерений индуктивности или ёмкости достаточно преобразовать период колебаний в удобную величину. Из приведённой выше формулы видно, что при неизменной ёмкости 25330 пФ или индуктивности 25,33 мГн для мультиметров серии 83х минимальная дискретность измерения - 0,1 мкГн и 0,1 пФ в интервалах 0...200 мкГн и 0...200 пФ соответственно, а частота колебаний при измеряемой индуктивности 1 мкГн равна 1 МГц.

Приставка содержит измерительный генератор, частота которого определяется LC-контуром и в зависимости от рода измерений - индуктивностью, подключённой к входным гнёздам катушки, или ёмкостью конденсатора, узел стабилизации выходного напряжения генератора, формирователь импульсов, делители частоты для расширения интервалов измерений и преобразователь периода повторения импульсов в напряжение, пропорциональное его квадрату, которое измеряет мультиметр.

Основные технические характеристики

Пределы измерения индуктивности.........200 мкГн; 2 мГн; 20 мГн; 200 мГн; 2 Гн; 20 Гн

Пределы измерения ёмкости..................200 пФ; 2 нФ; 20 нФ; 0,2 мкФ; 2 мкФ; 20 мкФ

Погрешность измерения на первых четырёх пределах от 0,1 предельного значения и выше, не более, % .........3

Погрешность измерения на пределах 2 мкФ и 2 Гн, не более, % ......................10

Погрешность измерения на пределах 20 мкФ и 20 Гн, не более, % ...................20

Максимальный потребляемый ток, не более, мА...........3

Погрешность измерения индуктивности на пределах 2 и 20 Гн зависит от собственной ёмкости катушки, её активного сопротивления, остаточной намагниченности магнитопровода, а ёмкости на пределах 2 и 20 мкФ - от активного сопротивления катушки в LC-контуре и ЭПС (ESR) измеряемого конденсатора.

Схема приставки приведена на рис. 1. В положении "Lx" переключателя SA1 измеряют индуктивность катушки, подключённой к гнёздам XS1, XS2, параллельно которой подключён конденсатор С1, а в положении "Cx" - ёмкость конденсатора, параллельно которому подключена катушка индуктивности L1. На транзисторах VT1, VT2 собран измерительный генератор синусоидального напряжения, частота которого, как уже сказано выше, определяется элементами LC-контура. Это усилитель, охваченный положительной обратной связью (ПОС). Первая ступень усилителя собрана по схеме с общим коллектором (эмиттерный повторитель), она обладает большим входным сопротивлением и малым выходным, а вторая - по схеме с общей базой (ОБ) - обладает малым входным и большим выходным сопротивлением. Тем самым достигнуто хорошее согласование при замыкании выхода второй с входом первой. Обе ступени неинвертирующие, поэтому такое соединение охватывает усилитель стопроцентной ПОС, которая в сочетании с высоким входным сопротивлением эмиттерного повторителя и выходным каскада с ОБ обеспечивает работу генератора на резонансной частоте LC-контура в широком интервале частот.

Рассмотрим работу LC-метра с подключённой к гнёздам XS1, XS2 "Lx, Cx" катушкой индуктивности или конденсатором. Напряжение с выхода генератора поступает на усилитель с высоким входным сопротивлением, собранный на транзисторе VT3, который усиливает его в пять раз, что необходимо для нормальной работы узла стабилизации выходного напряжения генератора. Узел стабилизации собран на диодах VD1, VD2, конденсаторах С3, С5 и транзисторе VT4. Он поддерживает выходное напряжение генератора на неизменном уровне около 100 мВ эфф., при котором можно проводить измерения без выпаивания элементов из платы, а также повышает устойчивость колебаний генератора на этом уровне. Выходное напряжение усилителя, выпрямленное диодами VD1, VD2 и сглаженное конденсатором С5, поступает на базу транзистора VT4. При амплитуде напряжения на выходе генератора менее 150 мВ этот транзистор открыт базовым током, протекающим через резистор R7, и на генератор подаётся полное напряжение питания +3 В (такое напряжение необходимо подать на генератор для его надёжного запуска, а также при измерении индуктивности 1...3 мкГн). Если при измерении амплитуда напряжения генератора станет больше 150 мВ, на выходе выпрямителя появится напряжение закрывающей транзистор VT4 полярности. Его коллекторный ток уменьшится, что приведёт к уменьшению напряжения питания генератора и восстановлению амплитуды его выходного напряжения до заданного уровня. В противном случае происходит обратный процесс.

Выходное напряжение усилителя на транзисторе VT3 через цепь С4,С6,R8 поступает на формирователь импульсов, собранный на транзисторах VT5 и VT6 по схеме триггера Шмитта с эмиттерной связью. На его выходе формируются прямоугольные импульсы с частотой генератора, малым временем спада (около 50 нс) и размахом, равным напряжению питания. Такое время спада необходимо для нормальной работы десятичных счётчиков DD1-DD3. Резистор R8 обеспечивает устойчивую работу триггера Шмитта на низких частотах. Каждый из счётчиков DD1 - DD3 делит частоту сигнала на 10. Выходные сигналы счётчиков поступают на переключатель пределов измерений SA2.

С подвижного контакта переключателя в зависимости от выбранного предела измерения "х1", "х10 2 ", "х10 4 " импульсные сигналы прямоугольной формы U и (рис. 2,а) поступают на преобразователь "период-напряжение", собранный на ОУ DA1.1, полевых транзисторах VT7-VT9 и конденсаторе С8. С приходом очередного импульса сигнала длительностью 0,5Т транзистор VT7 на это время закрывается. Напряжение с резистивного делителя R13R14 (около 2,5 В) поступает на неинвертирующий вход ОУ DA 1.1. На этом ОУ и транзисторе VT9 собран источник стабильного тока (ИТ). Ток ИТ 140 мкА задан параллельным включением резисторов R16 и R17 при замкнутых контактах выключателя SA3 (положение "х1") и в десять раз меньше - 14 мкА - резистором R16 при разомкнутых (положение "х10").

В момент прихода импульса длительностью 0,5T транзистор VT8 через дифференцирующую цепь С7R15 открывается на 5...7 мкс, разряжая за это время конденсатор С8, после чего закрывается и начинается зарядка конденсатора С8 стабильным током от ИТ (рис. 2,б). По окончании импульса транзистор VT7 открывается, замыкая резистор R13, и ток ИТ становится равным нулю. В течение следующего интервала 0,5T напряжение U1 на конденсаторе С8 остаётся до прихода следующего импульса неизменным и равным

U 1 = U С8 = I ИТ1 хТ/(2хС8) = К 1 хТ,

где К 1 = I ИТ1 /(2хС8) - постоянный коэффициент.

Из этого выражения следует, что напряжение на заряженном конденсаторе С8 пропорционально периодуТ поступающих импульсов. При этом напряжению 2 В соответствует максимальное значение измеряемого параметра на каждом пределе измерения. К конденсатору подключён вход буферного усилителя на ОУ DA1.2 с единичным коэффициентом усиления, входной ток которого ничтожно мал (единицы пикоампер) и не влияет на разрядку (и зарядку) конденсатора С8.

С выхода буферного усилителя оно поступает на следующий преобразователь - "напряжение-ток" на ОУ DA2.1. На этом ОУ и резисторах R18-R21 собран ещё один ИТ (ИТ2). Ток этого ИТ определяется входным напряжением, поступающим на левый по схеме вывод резистора R18, и его сопротивлением, а знак - от того, какой из резисторов (в нашем случае это R18 или R20) включён входным. ИТ нагружен на конденсатор С9. Во время действия входного импульса длительностью 0,5Т транзистор VT10 открыт и напряжение U 2 на конденсаторе С9 равно нулю (рис. 2,в). По окончании импульса транзистор закрывается и начинается зарядка конденсатора постоянным током от напряжения, поступающего на резистор R18 с буферного усилителя на ОУ DA1.2. Как видно из диаграммы (рис. 2,в), напряжение на конденсаторе линейно возрастает в виде пилы до появления через время 0,5Т следующего импульса. К моменту его появления напряжение на конденсаторе достигнет значения

U 2max = U С9max = I ИТ2 хТ/(2хС9) = U C8 xT/(2xR18xС9) = K 2 xU C8 xT = К 1 хК 2 хТ 2 ,

где К 1 , К 2 - постоянные коэффициенты; К 2 = 1/(2xR18xC9).

Из этого выражения следует, что амплитуда напряжения на конденсаторе С9 пропорциональна квадрату периода поступающих импульсов, т. е. линейно зависит от измеряемой индуктивности или ёмкости. Такое преобразование "в квадрат периода" логически понятно и без приведённого выражения, поскольку напряжение на конденсаторе С9 зависит линейно одновременно как от периода, так и от напряжения на входе ИТ, также зависящего линейно от периода. При этом напряжению U2max, равному 2 В, соответствует максимальное значение измеряемого параметра на каждом пределе измерения.

К конденсатору С9 подключён вход буферного усилителя на ОУ DA2.2. С его выхода напряжение пилообразной формы, уменьшенное до необходимого уровня делителем R22R23, поступает на вход "VΩmA" мультиметра (разъём XP2). Встроенная интегрирующая RC-цепь мультиметра, подключённая к входу АЦП (постоянная времени 0,1 с), и внешняя - R22C12 сглаживают импульсы пилообразной формы до среднего за период значения, которое равно четверти амплитудного. Так, при амплитуде "пилы" на разъёме XP2 "VΩmA" 0,8 В напряжение на входе АЦП мультиметра равно 200 мВ, что соответствует верхней границе измерения постоянного напряжения на пределе 200 мВ.

Приставка собрана на плате из фольгированного с двух сторон стеклотекстолита. Чертёж печатной платы показан на рис. 3, а расположение на ней элементов - на рис. 4.

Фотографии печатной платы представлены на рис. 5, 6. Штырь ХР1 "NPNC" - подходящий от разъёма. Штыри ХР2 "VΩmA" и ХР3 "СОМ" - от вышедших из строя измерительных щупов для мультиметра. Входные гнёзда XS1, XS2 - клеммник винтовой 350-02-021-12 серии 350 фирмы DINKLE. Переключатели движковые: SA1 - SS12D07; SA2, SA3 - серии MSS, MS, IS, например, MSS-23D19 (MS-23D18) и MSS-22D18 (MS-22D16) соответственно. Катушка L1 - самодельная, содержит приблизительно (уточняется при налаживании) 160 витков провода ПЭВ-2 0,2, намотанных в четырёх секциях по 40 витков на кольцевом магнитопроводе типоразмера 10x6x4,5 из феррита 2000НМ1, 2000НМ3 или N48 (EPCOS). Ферриты этих марок имеют низкий температурный коэффициент магнитной проницаемости. Использование ферритов других марок, например N87, приведёт к увеличению погрешности измерения ёмкости при изменении температуры уже на 5...10 о С.

Конденсаторы С1, С8 и С9 - плёночные импортные выводные на напряжение 63 В (например, WIMA, EPCOS). Отклонение ёмкости конденсаторов С8, С9 должно быть не более 5 %. Остальные - для поверхностного монтажа: С2, С10, С11 - типоразмера 0805; С4, С6, С7 - 1206; оксидные С3, С5, С12 - тан-таловые В. Все резисторы типоразмера 1206. Резисторы R13, R14, R16-R21 следует применить с допуском не более 1 %, причём резисторы R18, R20 и R19, R21 отобрать мультиметром с как можно близкими сопротивлениями в каждой паре. Зачастую - для отбора достаточно ленточной упаковки из 10...20 резисторов ряда Е24 пятипроцентного класса точности.

Транзисторы VT1 -VT5 должны иметь коэффициент передачи тока не менее 500, VT6 - от 50 до 200. Транзисторы BSS84 заменимы на IRLML6302, а IRLML2402 - на FDV303N. При иной замене следует учесть, что пороговое напряжение транзисторов должно быть не более 2 В, сопротивление открытого канала - не более 0,5 Ом, а входная ёмкость - не более 200 пФ при напряжении сток-исток 1 В. Микромощные ОУ AD8542ARZ заменимы, например, МСР602 или отечественными КФ1446УД4А. Последние желательно отобрать по напряжению смещения нуля не более 2 мВ для уменьшения погрешности измерения, когда его результат не превышает 10 % от установленного предела. Десятичные счётчики 74HC4017D высокоскоростной логики допустимо заменить аналогичными из серии 4000В фирмы NXP (PHILIPS) - HEF4017В. Применять аналогичные счётчики других фирм, тем более отечественные К561ИЕ8, не следует. При напряжении питания 3 В входная частота 1 МГц с измерительного генератора для таких счётчиков слишком велика, а длительность спада импульса на их входе (50 нс) - мала. Они могут такой сигнал "не почувствовать".

Выводы конденсаторов С8, С9, идущие к общему проводу, пропаивают с двух сторон печатной платы. Аналогично пропаивают выводы переключателя SA3 и вывод, идущий от подвижного контакта SA2, а также вилки ХР1-ХР3. Причём XP2 и XP3 крепят пайкой в первую очередь, а затем уже "по месту" сверлят отверстие и впаивают вилку ХР1. В отверстия площадок около истока транзистора VT10 и резистора R14 вставляют отрезки лужёного провода и пропаивают их с двух сторон. Перед монтажом у микросхем DD2, DD3 вывод 4 следует отогнуть или удалить.

При работе с LC-метром переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе "200mV". Пределы измерений LC-метра, соответствующие положениям переключателей SA2, SA3, приведены в таблице.

Калибровку LC-метра проводят в зависимости от наличия необходимых приборов и квалификации. В простейшем случае понадобятся катушка с точно известной индуктивностью, значение которой близко к соответствующему пределу измерения, и такой же конденсатор с измеренной ёмкостью. Для исключения погрешности от входной ёмкости LC-метра ёмкость конденсатора должна быть не менее 1800 пФ (например, 1800 пФ, 0,018 мкФ, 0,18 мкФ). Приставку сначала подключают к автономному источнику питания напряжением 3 В и измеряют потребляемый ток, который не должен превышать 3 мА, а затем подключают к мультиметру. Далее устанавливают переключатель SA1 в положение "Lx" и подключают к гнёздам XS1, XS2 "Lx, Cx" катушку с известной индуктивностью. Переключатели SA2 и SA3 устанавливают на соответствующий предел и добиваются показаний на индикаторе, численно равными индуктивности (запятую индикатора не учитывают), подключая при необходимости параллельно конденсатору С1 дополнительный ёмкостью до 3300 пФ. У конденсаторов С1, С8, С9 на печатной плате предусмотрены площадки для распайки дополнительных типоразмера 0805 для поверхностного монтажа. Возможна более точная корректировка показаний изменением в небольших пределах сопротивления резистора R22 или R23. Аналогично калибруют LC-метр при измерении ёмкости, но соответствующие показания на индикаторе устанавливают, изменяя число витков катушки L1.

Измеряя ёмкость приставкой, необходимо учитывать её входную ёмкость, которая в авторском образце равна 41,1 пФ. Это значение отображает индикатор мультиметра, если установить переключатель SA1 в положение "Сх", а SA2 и SA3 - в положение "x1". При изменении топологии печатной платы соединения выводов конденсаторов С8 и С9 с выводами транзисторов VT9 и VT10 должны быть выполнены отдельными проводниками.

Приставку можно использовать как генератор фиксированных частот синусоидальной и прямоугольной формы. Синусоидальный сигнал напряжением 0,1 В снимают с эмиттера транзистора VT3, прямоугольный амплитудой 3В - с подвижного контакта переключателя SA2. Нужные частоты получают, подключая к входу приставки конденсаторы соответствующей ёмкости в положении "Cx" переключателя SA1.

Чертёж печатной платы в формате Sprint Layout 5.0 можно скачать .

Литература

1. Универсальный LC-генератор. - Радио, 1979, № 5, с. 58.

2. L-метр с линейной шкалой. - Радио, 1984, № 5, с. 58, 61.


Дата публикации: 15.12.2014

Мнения читателей
  • camper / 19.05.2019 - 22:22
    Уже есть готовое решение http://www.ti.com/product/LDC1000
  • Сергей / 15.12.2016 - 01:16
    Roman, это не очень просто. С указанными транзисторами генератор тянет где-то до 2...3 МГц. Надо менять их, например, на КТ363, КТ3128 и уменьшить R2. Возможно придётся поднять питание до 5В. То же касается и VT3, VT5, VT6, т. е. ставить с малой ёмкостью к-э для снижения эффекта Миллера. Как вариант, для расширения полосы частот вместо VT3 - дифференциальный каскад. Уменьшить сопротивление R12. Если просто увеличить C1 в 10 раз, то генератор навряд ли возбудится из-за слишком низкой добротности LC-контура.
  • Roman / 13.10.2016 - 12:05
    Полностью присоединяюсь к комментарию Сергея Шибаева. Вопрос по поводу нижнего предела измерения индуктивности - я так понимаю минимум - 20мкГн. Можно ли сместить диапазон измерения вниз, до 0.2мкГн, в ущерб, скажем, верхнему пределу - ну не надо 20Гн мерять кому-то, и 2Гн тоже не надо... Ну или можно два изготовить, на разные диапазоны... Что для этого нужно? С уважением, Роман.
  • Сергей / 12.01.2015 - 16:52
    Спасибо тёзка за отзыв. В №1 за 2015 год тоже неплохой прибор будет представлен.
  • Сергей Шибаев / 18.12.2014 - 13:53
    Отличная разработка. Автору жму руку! С уважением Сергей Шибаев

В журнале «Радиолюбитель» №3 2001 г. я прочитал статью С. Гордиенко «Прибор для проверки полупроводниковых стабилитронов» с простой схемой. Но меня не устроило питание от 6 вольт, а также трансформатор от сетевого адаптера, который имеет значительный вес и габариты.

Поэтому я изготовил вариант идентификатора стабилитронов, в котором применил импульсный трансформатор на ферритовом кольце и напряжение питания снизил до 1,5 вольта:

При напряжении питания 1,5 вольт и потребляемом токе около 36 мА напряжение холостого хода на выходе приставки получилось около 150 вольт. При питании от аккумулятора с напряжением 1,2 вольта выходное напряжение снижается до 130 вольт.
Приставка сохраняет работоспособность при снижении напряжения питания до 0,4 вольта (при этом, соответственно, снижается выходное напряжение), но это позволяет во многих случаях использовать для ее питания даже подсевшие элементы.

Трансформатор намотан на ферритовом кольце К10х6х5. Первичные обмотки намотаны в два провода ПЭЛШО 0,31 2х10 витков. Вторичная обмотка тоже намотана в два провода ПЭТВ 0,19 по 105 витков. Затем обмотки соединены последовательно (начало одной и конец другой). Диаметр провода можно взять меньшим, чем в моем варианте.

Транзистор и диод я выпаял из вспышки одноразового фотоаппарата. Но можно применить и другие n-p-n транзисторы (желательно с малым напряжением насыщения). При этом потребуется лишь подобрать номинал резистора R1. Уменьшение сопротивления резистора ведет к увеличению выходного напряжения и тока.
Диод можно заменить на любой выпрямительный высоковольтный с малым временем восстановления (способный выпрямлять на частотах в сотни кГц).
Я пробовал ставить транзистор КТ315Г и диод 1N4007. Но с ними на треть снижалось выходное напряжение и КПД устройства.

Детали приставки разместил на печатной плате размерами 60х23 мм:

Корпус приставки склеил из листового пластика толщиной 2 мм:

Крышка батарейного отсека крепится к корпусу двумя винтами М2 с потайной головкой.

Для подсоединения к мультиметру использовал штекеры от его щупов, которые впаял прямо в плату. Для подключения стабилитронов в плату впаял гнезда от разъема 2РМ, в которые также можно вставлять выносные щупы или зубчатые зажимы типа «крокодил»:

Для проверки стабилитрона его сначала подключают к приставке, а затем включают ее питание. Мультиметр должен быть установлен на педеле 200 вольт. Его показания будут равны напряжению стабилизации стабилитрона:

Не надо бояться перепутать полярность. При этом прибор лишь покажет прямое падение напряжения на стабилитроне 0,6…0,8 вольта (если он не двусторонний).
С помощью этой приставки можно также проверять низковольтные диоды для определения их напряжения пробоя. Такие диоды в обратном включении можно использовать вместо высоковольтных стабилитронов.

Для замера больших токов, как правило, применяют бесконтактный метод, — особыми токовыми клещам. Токовые клещи – измерительное устройство, имеющее раздвижное кольцо, которым охватывают электропровод и на индикаторе прибора отображается величина протекающего тока.

Превосходство подобного метода бесспорно, — чтобы замерить силу тока нет нужды разрывать провод, что в особенности немаловажно при измерении больших токов. В данной статье приводится описание токовые клещи постоянного тока , которые вполне возможно сделать своими руками.

Описание конструкции самодельных токовых клещей

Для сборки устройства понадобится чувствительный датчик Холла, к примеру, UGN3503. На рисунке 1 изображено устройство самодельной клещи. Необходим, как уже сказано, датчик Холла, а так же, кольцо ферритовое диаметром от 20 до 25 мм и крупный «крокодил», к примеру, подобный как на проводах для запуска (прикуривания) автомобиля.

Ферритовое кольцо необходимо точно и аккуратно распилить либо разломить на 2-е половинки. Для этого ферритовое кольцо необходимо сначала подпилить алмазным надфилем или пилкой для ампул. Далее, поверхности разлома ошкурить мелкой шкуркой.

С одной стороны на первую половинку ферритового кольца приклеить прокладку из чертежного ватман. С другой стороны на другую половинку кольца наклеить датчик Холла. Приклеивать лучше всего эпоксидным клеем, только нужно проследить, чтобы датчик Холла хорошо прилегал к зоне разлома кольца.

Следующий шаг – соединяем обе половинки кольца и обхватываем его «крокодилом» и приклеиваем. Теперь при нажатии на ручки «крокодила» ферритовое кольцо будет расходиться.

Электронная схема токовых клещей

Принципиальная электрическая схема приставки к мультиметру изображена на рисунке 2. При протекании тока по электропроводу, вокруг него появляется магнитное поле, и датчик Холла фиксирует силовые линии, проходящие через него, и формирует некоторое постоянное напряжение на выходе.

Данное напряжение усиливается (по мощности) ОУ А1 и идет на выводы мультиметра. Соотношение напряжения на выходе от протекающего тока: 1 Ампер = 1 мВольт. Подстроечные сопротивления R3 и R6 — многооборотные. Для настройки необходим лабораторный блок питания с минимальным током на выходе около 3А, и встроенным амперметром.

Сперва подсоедините данную приставку к мультиметру и выставьте её на нуль путем изменения сопротивления R3 и среднем положении R2. Далее, перед любым измерением необходимо будет выставлять ноль потенциометром R2. Выставьте на блоке питания наименьшее напряжение и подсоедините к нему большую нагрузку, например, электролампу, применяемую в фарах автомобиля. Затем на один из проводов, подсоединенный к данной лампе, зацепите «клещи» (рисунок 1).

Повышайте напряжение, до тех пор, пока амперметр блока питания не покажет 2 ампера. Подкрутите сопротивление R6 так, чтобы величина напряжения мультиметра (в милливольтах) соответствовала данным амперметра блока питания в амперах. Еще несколько раз проконтролируйте показания, меняя силу тока. Посредством этой приставки возможно мерить ток до 500А.

Приставка совместно с цифровым мультиметром серий М-83х, DT-83x позволяет проводить измерения малых активных сопротивлений с дискретностью 0,001 Ом. Как и предыдущие приставки, разработанные автором, она питается от внутреннего стабилизатора АЦП мультиметра.

Известно, что мультиметры серий М-83х, DT-83x обладают малой погрешностью измерения напряжения постоянного тока. Причём эту погрешность всегда можно минимизировать, откалибровав прибор подстройкой образцового напряжения (100 мВ). Поэтому, по мнению автора, разработка и повторение приставок для мультиметра, преобразующих ту или иную измеряемую величину в постоянное напряжение на его входе "VΩmA", могут представлять интерес для определённой части радиолюбителей как с финансовой точки зрения, так и с творческой. При доступности элементной базы и её стоимости из таких приставок можно собрать неплохой измерительный комплекс для домашней лаборатории, не прибегая к покупке дорогих измерительных приборов, причём зачастую с погрешностью измерений, приближающейся к погрешности самого мультиметра. Очередная такая приставка - миллиомметр - представлена ниже. Она позволяет измерять малые активные сопротивления резисторов, что особенно важно при их самостоятельном изготовлении из отрезков проводов с высоким удельным сопротивлением, например, для различных шунтов.

Основные технические характеристики

Интервал измерения, Ом..............0,001...1,999

Погрешность измерения сопротивления в интервале 0,2...1,999 Ом, %, не более * ..........................2

Напряжение питания, В............3

Ток потребления, мА, не более.......................2,5

__________
* Погрешность измерения тщательно налаженного устройства в указанном выше интервале практически сводится к погрешности мультиметра в режиме измерения постоянного напряжения на пределе 200 мВ через 5...10 мин после включения приставки при замкнутых измерительных зажимах.

Существуют два простых способа измерения низкоомных резисторов. Первый - подавать через измеряемый резистор небольшой ток (единицы мА) с последующим усилением падения напряжения на измеряемом резисторе. Однако это потребует применения в усилителе постоянного тока дорогостоящих и не всем доступных прецизионных ОУ с малым напряжением смещения нуля и его уходом от изменения температуры. Второй - более простой и менее затратный - подавать больший ток (например, 100 мА) и непосредственно измерять падение напряжения на резисторе. В случае наличия соответствующего источника постоянного тока (ИТ) так и поступают. На первый взгляд, при питании миллиомметра от АЦП мультиметра такой возможности нет. Но существует ещё и импульсный метод, когда ток от ИТ для измерения подают короткими во времени импульсами по отношению к их периоду. При этом средний ток измерения, как известно, снижается пропорционально скважности импульсной последовательности.

Этот метод, как и в некоторых предыдущих разработках, например , использован для измерения малых сопротивлений.

Схема приставки приведена на рис. 1. Рассмотрим работу приставки при подключённом к зажимам ХТ3, ХТ4 измеряемом резисторе R x .

Рис. 1. Схема приставки

На логическом элементе DD1.1 - триггере Шмитта (ТШ), элементах VD1, C1, R1, R2 собран генератор импульсов. Период повторения импульсов - 150...160 мкс, пауза - 3...4 мкс. При указанном на схеме включении диода VD1 генератор потребляет минимальный ток, что связано с особенностью разного потребления тока ТШ при его переходе из состояния логического нуля в логическую единицу и обратно . Когда напряжение на входе уменьшается от высокого уровня к низкому (на выходе уровень логического нуля), сквозной ток через выходные транзисторы ТШ в 2...4 раза больше, чем в обратном случае. Эта особенность, по наблюдениям автора, проявляется во всех ТШ буферизированной логики КМОП. Поэтому, если время разрядки конденсатора С1 сократить введением цепи VD1R2, средний ток потребления генератором импульсов при питании 3 В для серии 74НС будет равен 0,2 мА вместо 0,5...0,8 мА. Элементы DD1.2 и DD1.3 - инверторы, на выходе которых длительность импульсов равна 3...4 мкс, а пауза - 150...160 мкс. Они включены параллельно для повышения нагрузочной способности.

На транзисторе VT1 собран источник тока. Диод VD2 - термокомпенсирующий. Ток ИТ задан равным 100 мА. При таком токе на резисторе сопротивлением 2 Ом падение напряжения равно 200 мВ, что соответствует пределу измерения в мультиметре "200 mV". ИТ задаёт ток для измерения только при появлении паузы на выходе генератора импульсов на DD1.1, когда резистор R4 на время 3...4 мкс через этот выход подключён к общему проводу. "Ускоряющий" конденсатор С2 уменьшает время переключения транзистора VT1 для получения на измеряемом резисторе Rx прямоугольных импульсов. Инвертированные импульсы с выходов элементов DD1.2, DD1.3 поступают на затвор полевого транзистора VT2, включённого как синхронный детектор. На время действия импульса ток от ИТ проходит через измеряемый резистор, создавая на нём падение напряжения, которое через открытый транзистор VT2 синхронного детектора поступает на "запоминающий" конденсатор С4, заряжая его до падения напряжения на резисторе. Напряжение с конденсатора через клеммы XP2, XP3 поступает на вход "VΩmA" для измерения. По окончании импульса оба транзистора закрываются на время 150...160 мкс до появления следующего. Сглаживающий конденсатор С3 ёмкостью 220 мкФ устраняет в линии питания импульсный характер тока потребления приставкой, поддерживая его на уровне около 2,5 мА для встроенного стабилизатора напряжения +3 В АЦП мультиметра. Этот ток нетрудно определить, учитывая, что скважность импульсов на выходе инверторов DD1.2, DD1.3 равна 40...50 (100 мА/ (40...50)).

Узел на полевом транзисторе VT3 и элементах R8, C5 служит для ограничения тока зарядки конденсатора С3 от стабилизатора напряжения АЦП на уровне не более 3 мА с момента подачи питания в течение 5 с. При подаче питания напряжение на конденсаторе С5 начинает расти за счёт протекания зарядного тока через резистор R8. Когда оно достигнет порогового для транзистора VT3, последний начинает плавно открываться, обеспечивая ток зарядки конденсатора С3 на безопасном для стабилизатора АЦП уровне. Резистор R7 и диод VD3 обеспечивают разрядку конденсатора С5 после отключения питания.

Приставка собрана на плате из фольгированного с одной стороны стеклотекстолита. Чертёж печатной платы и расположение на ней элементов показаны на рис. 2. Фотография собранной приставки представлена на рис. 3.

Рис. 2. Чертёж печатной платы и расположение на ней элементов

Рис. 3. Фотография собранной приставки

Конденсаторы, резисторы и диоды - поверхностно монтируемые. Конденсаторы С1, С2, С4 - керамические типоразмера 1206, С3, С5 - танталовые типоразмеров С и В. Все резисторы - 1206. Немного подробнее следует сказать о транзисторе 2SA1286 (VT1) . Он заменим, например, 2SA1282, 2SA1282А с коэффициентом передачи тока h 21Э не менее 500 (дополнительный индекс G) . Возможна замена и на другие аналогичные с меньшим h 21Э (до 300), при этом сопротивление резистора R4 следует уменьшить до 1,8...2 кОм. Главное - проверить в документации или экспериментально, чтобы пологая часть выходной характеристики транзистора при токе коллектора I к 100 мА начиналась с напряжения U кэ не более 0,5 В. В противном случае на указанную погрешность измерения рассчитывать не придётся - она может быть существенно больше. Полевой транзистор IRLML2402 (VT2) заменим, например, FDV303N, а IRLML6302 (VT3) - BSS84. При иной замене следует учесть, что пороговое напряжение транзисторов, сопротивление открытого канала и входная ёмкость (Ciss) должны быть сопоставимы заменяемым.

Штырь ХР1 "NPNc" - подходящий от разъёма или отрезок лужёного провода подходящего диаметра. Отверстие под него в плате сверлят "по месту" после установки штырей ХР2, ХР3. Штыри ХР2 "VΩmA" и ХР3 "СОМ" - от щупов для мультиметра. Неразъёмные соединения XT 1, XT2 - лужёные пустотелые медные заклёпки, пропаянные с предназначенными для них контактными площадками на печатной плате. В заклёпки вставлены и пропаяны облуженные концы гибкого провода МГШВ сечением 0,5...0,75 мм 2 , заканчивающиеся зажимами XT3, XT4 типа "крокодил". Длина каждого провода - 10...12 см. Нижние внутренние поверхности "пасти" зажимов облуживают. Концы проводов, идущих к ним, облуживают, затем протаскивают в нижние "пасти" зажимов и припаивают. Припой следует нанести с излишком, который затем опиливают надфилем до уровня зубьев "крокодила", как показано на фотографии рис. 4.

Рис. 4. Зажимы с припоем

Приставка требует налаживания. При работе с ней переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе "200 mV". Показания с учётом высвечиваемой запятой следует делить на 100. Перед подключением приставки к мультиметру следует проконтролировать потребляемый ею ток от другого источника питания напряжением 3 В, имеющего защиту по току, чтобы не вывести из строя встроенный маломощный стабилизатор напряжения питания АЦП в случае неисправности какого-либо элемента или случайного замыкания токоведущих дорожек платы.

Подключите приставку к мультиметру и замкните зажимы XT3, XT4, "закусив" их "пасти" с напаянными площадками друг на друга. Дайте установиться тепловому режиму транзистора VT1 в течение 5...10 мин. Несмотря на то что корпус транзистора холодный на ощупь, кристалл внутри корпуса даже от коротких импульсов тока 100 мА за это время нагреется и его температура стабилизируется. Для облегчения налаживания резисторы R3 и R6 на плате составлены из двух, соединённых параллельно. На рис. 2 они обозначены как R3’, R3” и R6’, R6”. Через 5...10 мин подберите резистор R6’ так, чтобы показания индикатора мультиметра оказались в интервале 0.+0,5 мВ, а затем подбором дополнительного резистора R6” большего сопротивления установите "чистый" ноль (±0 мВ). Далее, подключив к зажимам XT3, XT4 заведомо измеренный резистор R x , например, 1 Ом, резисторами R3’ и R3” установите соответствующие показания на индикаторе мультиметра. Для уменьшения погрешности измерений указанные операции следует повторить до получения нужного результата. На рис. 5 показана фотография приставки с мультиметром при измерении проволочного резистора С5-16МВ мощностью 2 Вт с номинальным сопротивлением 0,33 Ом и допуском ±5 %.

Рис. 5. фотография приставки с мультиметром

При изменении печатной платы свободные входы элементов микросхемы DD1 следует соединить с плюсовой линией питания или с общим проводом.

Чертёж печатной платы в формате Sprint LayOut 5.0 можно скачать .

Литература

1. Глибин С. Измеритель ЭПС - приставка к мультиметру. - Радио, 2011, № 8, с. 19, 20.

2. Глибин С. Замена микросхемы 74АС132 в измерителе ЭПС. - Радио, 2013, № 8, с. 24.

3. 74HC14, 74HCT14. Hex inverting Schmitt trigger. - URL: http://www.nxp.com/ documents/data_sheet/74HC_HCT14.pdf (6.04.15).

4. 2SA1286. - URL: http://pdf.datasheetcatalog.com/datasheets2/14/ 147003_1.pdf (6.04.15).

5. 2SA1282, 2SA1282A. - URL: http://pdf. datasheetcatalog.com/datasheets2/16/ 163185_2.pdf (6.04.15).


Дата публикации: 29.10.2015


Мнения читателей
  • Юрий / 30.01.2018 - 08:37
    Меня заинтересовала,пиши мне на почту [email protected]
  • Александр / 17.05.2017 - 22:40
    Кого интересует разводка плат в тестер,-пишите -sasha77760@Rambler,RU
  • Александр / 17.05.2017 - 22:06
    Прекрасные схемы измеритель esr+ИЗМЕРИТЕЛЬ резисторов 0--1.999 ом, причем обе приставки умещаются внутри прибора, только нужно вывести разьемы и поставить 2 малогабаритных переключателя тоже внутри тестера!

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло. Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами. Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний. Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки.

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363. Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей. Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%. Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к .

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн). Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%. По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.